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A B S T R A C T   

In 2015 and 2016, atmospheric transport modeling challenges were conducted in the context of the Compre
hensive Nuclear-Test-Ban Treaty (CTBT) verification, however, with a more limited scope with respect to 
emission inventories, simulation period and number of relevant samples (i.e., those above the Minimum 
Detectable Concentration (MDC)) involved. Therefore, a more comprehensive atmospheric transport modeling 
challenge was organized in 2019. Stack release data of Xe-133 were provided by the Institut National des 
Radioéléments/IRE (Belgium) and the Canadian Nuclear Laboratories/CNL (Canada) and accounted for in the 
simulations over a three (mandatory) or six (optional) months period. Best estimate emissions of additional 
facilities (radiopharmaceutical production and nuclear research facilities, commercial reactors or relevant 
research reactors) of the Northern Hemisphere were included as well. Model results were compared with 
observed atmospheric activity concentrations at four International Monitoring System (IMS) stations located in 
Europe and North America with overall considerable influence of IRE and/or CNL emissions for evaluation of the 
participants’ runs. Participants were prompted to work with controlled and harmonized model set-ups to make 
runs more comparable, but also to increase diversity. It was found that using the stack emissions of IRE and CNL 
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with daily resolution does not lead to better results than disaggregating annual emissions of these two facilities 
taken from the literature if an overall score for all stations covering all valid observed samples is considered. A 
moderate benefit of roughly 10% is visible in statistical scores for samples influenced by IRE and/or CNL to at 
least 50% and there can be considerable benefit for individual samples. Effects of transport errors, not properly 
characterized remaining emitters and long IMS sampling times (12–24 h) undoubtedly are in contrast to and 
reduce the benefit of high-quality IRE and CNL stack data. Complementary best estimates for remaining emitters 
push the scores up by 18% compared to just considering IRE and CNL emissions alone. Despite the efforts un
dertaken the full multi-model ensemble built is highly redundant. An ensemble based on a few arbitrary runs is 
sufficient to model the Xe-133 background at the stations investigated. The effective ensemble size is below five. 
An optimized ensemble at each station has on average slightly higher skill compared to the full ensemble. 
However, the improvement (maximum of 20% and minimum of 3% in RMSE) in skill is likely being too small for 
being exploited for an independent period.   

1. Introduction 

Atmospheric transport modeling (ATM) is an essential tool for link
ing radionuclide measurements of the International Monitoring System 
(IMS, Ctbto Preparatory Commission (2019)) of the Comprehensive 
Nuclear-Test-Ban Treaty Organization (CTBTO) to possible sources in 
order to enable verification of compliance with the Comprehensive 
Nuclear-Test-Ban Treaty (CTBT, Ctbto (1996); Wotawa et al. (2003); 
Matthews and De Geer (2004); Ctbto (2020b)). However, possible un
derground nuclear explosions like those conducted by the Democratic 
People’s Republic of Korea (DPRK) in the recent years (e.g., Ringbom 
et al. (2009) or Ringbom et al. (2014)) are especially challenging to 
verify. If the explosion cavity is well contained only small fractions of 
noble gases will escape into the atmosphere, in a quantity that is com
parable with or smaller than releases from medical isotope production 
facilities (MIPFs) or nuclear reactors (see the review article Bowyer 
(2020) and references therein). Properly simulating the industrial 
radioxenon background via ATM is of utmost importance and has 
attracted increasing attention over the last years (e.g., most recently 
Goodwin et al. (2021a) or Goodwin et al. (2021b)). Emission inventories 
– accounting above all for completeness in terms of the number of 
existing industrial emitters (not only, but in the first place for MIPFs) 
and for rough estimates of their daily emissions – are one important 
ingredient for successfully modeling the civil radioxenon background 
for the purpose of CTBT verification (see review article Bowyer (2020) 
and references therein). 

An analysis by the International Data Center (IDC) of CTBTO per
formed for the year 2014 revealed that meanwhile enough historic MIPF 
emission data have been collected to perform a more comprehensive 
study. In this context it has to be mentioned that the IDC has started 
receiving measured release data following WOSMIP V (Workshop on the 
Signature of Man-Made Isotope Production, https://www.wosmip. 
org/). The study presented makes use of this evolving emission data 
pool. 

Since ATM is connected with inherent uncertainties international 
multi-model exercises – so called “challenges” – to model the radioxenon 
background under different settings have been conducted in the past to 
tackle the issue of civil radioxenon background analysis. After success
fully performing two ATM challenges (2015 & 2016, Eslinger et al. 
(2016) and Maurer et al. (2018)) in the past years with some limitations 
in terms of emission inventories, simulation period and number of 
relevant samples (i.e., those above the Minimum Detectable Concen
tration (MDC)) involved, a first step in the transition from merely sci
entific case studies towards the practical use of modeling radioxenon 
background at selected IMS stations had been envisioned for a third 
challenge. Questions regarding the required temporal emission resolu
tion for medical isotope production sites needed for ATM and tolerable 
emission uncertainty could be answered by the last two challenges and 
other recent publications. De Meutter et al. (2018) were the first to state 
that daily emission data resolution should be sufficient for most cases, at 
least for the current IMS sampling time intervals (12–24 h). Recently, 
Generoso et al. (2022) demonstrated that the benefit from more detailed 

emission data gathered directly at the stack of a facility (therefore 
usually called stack data in brief) decreases with increasing distance 
from the source. Analysis of one year simulation time series with/
without stack data shows that in case of the distance of 250 km between 
the Institut National des Radioéléments (IRE) in Fleurus (Belgium) and 
Paris (France) an added value is clearly visible. Nevertheless, de
ficiencies in depicting meteorological processes can play an important 
role for the overall performance of dispersion modeling. At IMS station 
Spitzbergen (NOX49) and beyond (1000–1500 km) in any case no dif
ference between the use of stack data and the use of disaggregated best 
estimate literature data can be found. Goodwin et al. (2021b) report an 
imperfect agreement between simulated and observed activity concen
tration at the IMS radionuclide laboratory GBL15 (UK) likely due to a 
combination of atmospheric transport uncertainty and the mixing of 
fresh plumes with plumes related to older emissions, possibly from other 
locations than IRE. According to these authors Europe has a substantial 
(and variable) radioxenon background and therefore the likelihood of 
measuring a single emission from a single facility (i.e., without any 
contamination from others) is very low. In general detections are stated 
to be underestimated by Goodwin et al. (2021b) when comparing 
measurement data with model simulations using stack emission data 
from IRE as input only. Consistently, Kuśmierczyk-Michulec et al. 
(2019) illustrated the higher added value of knowing stack data from a 
single emitter in the Southern Hemisphere compared to the Northern 
Hemisphere due to the different emitter density in the two hemispheres. 

In the Third ATM-Challenge it was systematically investigated to 
what extent actual daily emission data from two main emitters provide 
an added value in simulations for four IMS stations in Europe as well as 
North America. Results were compared to those based on average 
emission values known from literature. The analysis covered runs sub
mitted by 14 participating organizations, an extended period of inves
tigation of three or six months and incorporated as many emitters as are 
known. Further, to treat the inherent uncertainties of ATM, a multi-input 
multi-model approach known from air-quality modeling (Kioutsioukis 
and Galmarini, 2014) was applied within the frame of the Third 
ATM-Challenge. It relies on the concept that a group of diverse, but at 
the same time reasonably accurate models, can be optimally combined 
in a multi-model ensemble approach, thus giving more accurate simu
lations. An optimal combination of models can be defined as one where a 
sub-group of all available models (or ideally the ensemble based on all 
models) outperforms the best individual run. According to Kioutsioukis 
and Galmarini (2014) there is the possibility to train an optimal 
ensemble per station if sufficient observations and model data are 
available. The training approach was another goal of the Third 
ATM-Challenge. For this purpose it is important to include as many 
above MDC values and as many known sources as possible as was the 
case for the Third ATM-Challenge. Involving many above MDC values 
implies that one should consider many possible sources which could 
have caused them. 

The ultimate goal of any efforts related to ATM in the context of 
CTBT verification has always been to finally provide an (ensemble) 
analysis of radioxenon background levels at IMS stations frequently 
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affected by industrial emissions. Analysts at the National Data Centers 
(NDCs) should in the end ideally be able to immediately sort out sus
picious events which can be clearly traced back to radiopharmaceutical 
isotope production facilities and/or nuclear reactors. Focus in this ex
ercise is solely on Xe-133 as it is the most common radioxenon isotope in 
ambient air samples. Due to its half-life of 5.24 days and its large cu
mulative fission yields of up to about 7%, this radioxenon isotope has a 
high detectability. It is almost continuously present in the atmosphere in 
regions of the globe with active nuclear facilities (Achim et al., 2016). 
Results or concepts from this study can be easily adopted for the other 
xenon isotopes, bearing in mind the different half-lifes. 

Finally, another aspect – as for the last challenges – was to compare 
results of the current challenge in terms of individual model perfor
mance. New statistical metrics were implemented and some parameters 
(e.g., model output resolution) were tried to set uniformly in order to 
enhance comparability. However, this time the model inter-comparison 
was only a minor purpose of the exercise. 

Section 2 describes the scenario, radioxenon inventories used, IMS 
measurements, set-up of the atmospheric transport and dispersion 
models as well as the statistical analyses applied. Results and a discus
sion are provided in section 3. The paper is completed by conclusions 
drawn in section 4 covering the relevance and implications of the results 
found for radioxenon background modeling. Notes on individual model 
performance can be extracted from Appendix A. 

2. Material and methods 

The exercise was aimed at modeling Xe-133 activity concentrations 
at four IMS stations frequently affected by industrial radioxenon emis
sions from IRE (Belgium) and/or the Canadian Nuclear Laboratories/ 
CNL (Canada) radiopharmaceutical plants, i.e., St. John’s/CAX17 
(Newfoundland and Labrador, Canada), Schauinsland/DEX33 (Frei
burg, Germany), Stockholm/SEX63 (Sweden) and Charlottsville/USX75 
(Virginia, United States of America) for up to six months (June to 
November 2014). The modeling incorporated compulsively daily emis
sions from these two main sources. In addition, recent publicly available 
annual and quarterly emission estimates for commercial nuclear power 
plants (NPPs) distributed over the Northern Hemisphere and broken 
down to daily emissions on the basis of facility operating factors as well 
as the 24 nuclear research reactors (NRRs) of the Northern Hemisphere 
with the highest estimated radioxenon releases were considered 
depending on the participants’ own decision. The same applies to the 
annual emissions from additional medical isotope production and 
research facilities, i.e., the Mallinckrodt facility (The Netherlands), the 
NIIAR facility (Russia), the Karpov Institute (Russia), HFETR (China), 
PINSTECH (Pakistan), Lantheus Medical Imaging (Canada) and Nordion 
(Canada) which were disaggregated and also supplied to optionally 
refine predictions. Participants used well established modeling chains of 
their institutions adhering, however, to specified predefined output 
formats. 

2.1. Challenge scenario 

The unique opportunity of having access to radioxenon stack emis
sion data from IRE and CNL for 2014 motivated us to set up the scenario 
for the Third ATM-Challenge in the Northern Hemisphere. In addition, 
in 2014, out of 23 noble gas IMS stations which were in operation, 15 
were located in the Northern Hemisphere. Using the Continuously 
Emitting Sources (CES) functionality of the CTBTO/IDC software 
WEBGRAPE (Web connected Graphics Engine, Ctbto (2020b)), the 
emissions in Table 1 as well as those from commercial nuclear reactors 
(see subsection 2.3) and the operationally produced SRS (source-r
eceptor-sensitivity) backward fields (Wotawa et al., 2003; 
Kuśmierczyk-Michulec et al., 2021) from 2014, it was possible to select 
stations for which the influence of emissions from IRE and/or CNL is 
dominant and results in frequent above MDC Xe-133 detections. This 
was to ensure that the contribution from not-well defined sources would 
be minimized. Following this pre-study, stations CAX17, DEX33, SEX63 
and USX75 were selected. For the purpose of this exercise, it was esti
mated that the period with the largest number of above MDC Xe-133 
measurements at the above-mentioned stations is between June and 
November. Taking into account that some participants of this 
ATM-Challenge had resources to model just a three month period, July 
to September was proposed as the core period with most abundant 
above MDC samples; the remaining months served as an optional period. 

In terms of percentage contributions of individual emitters to the 
overall modeled signal it is evident from Fig. 1 that there is a big dif
ference between Europe and North America on one side and between 
individual months on the other. At the European IMS stations DEX33 
and SEX63, IRE contributes on average below 40% to the total signal. 
November 2014 is exceptional in so far as the IRE (located to the 
northwest of DEX33) contributions due to persistent south-westerlies 
converge to zero and commercial nuclear power plants are the domi
nating emitters. At the North American IMS stations CAX17 and USX75 
the CNL influence adds up to nearly 100% for the whole period of 
investigation. According to Gueibe et al. (2017) average annual emis
sions of CNL with a total activity of 1.5E16 Bq were one order of 
magnitude larger than those of IRE with a total activity of 2E15 Bq. CNL, 
however, is no longer producing since October 2016. 

2.2. Emission data for IRE, CNL and other radiopharmaceutical 
production and nuclear research facilities of the Northern Hemisphere 

IRE and CNL MIPFs have given the permission to use the original 
stack data within this challenge. Annual estimates broken down to daily 
values for Curium, former Mallinckrodt, are taken from Saey (2009); for 
IRE, CNL, NIIAR and Karpov Institute from Kalinowski (2022); for 
HFETR and PINSTECH PARR-1 from Achim et al. (2016); and for Lan
theus and Nordion from Pnnl (2017). An overview of the nine involved 
medical isotope production and research facilities together with their 
emissions is provided in Table 1. Their geographical location is shown in 
Fig. 2. 

The original CNL emission file included recordings with a frequency 

Table 1 
Name, geographical location, stack height and Xe-133 emissons for radiopharmaceutical production and nuclear research facilities of the Northern Hemisphere 
considered in the Third ATM-Challenge. For IRE and CNL both actual daily stack release data as well as disaggregated annual values were used. aEstimates.  

MIPF or institution name Longitude [◦E] Latitude [◦N] Elevation [m a.s.l.] Stack height [m] Emission/day [Bq] 

Institut National des Radioéléments-IRE 4.54 50.45 183 26 variable or 1.52E12 
Canadian Nuclear Laboratories-CNL − 77.37 46.05 159 61 variable or 2.14E13 
Mallinckrodt 4.68 52.78 not available 25a 2.00E09 
NIIAR 49.48 54.19 not available 25a 5.51E12 
Karpov Institute 36.57 55.08 not available 25a 8.25E11 
HFETR 104.03 30.51 not available 25a 1.00E12 
PINSTECH PARR-1 73.26 33.65 not available 25a 1.00E12 
Lantheus Medical Imaging − 71.31 42.55 not available 25a 3.15E07 
Nordion − 75.92 45.34 not available 25a 4.11E10  
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of 30 s, which for the purpose of the ATM-Challenge was not suitable, 
and therefore had to be aggregated to daily values. However, before 
doing that, the quality of the data was carefully checked, and all outliers 
as well as missing records related to periods of calibration and technical 
maintenance were identified. A similar procedure was applied to stack 
emission data from the IRE facility which come at 15 min temporal 
resolution. 

2.3. Emission data for NPPs and NRRs of the Northern Hemisphere 

The emissions of NPPs are taken from Kalinowski and Tatlisu 
(2020a) and Kalinowski and Tatlisu (2020b). The daily emissions of 
NPPs range over many orders of magnitude from 1E5 to more than 1E10 
Bq/day. The emissions of NRRs are taken from Kalinowski et al. (2021). 
Since only the NRRs with the highest emissions are relevant in com
parison to NPPs with the lowest release rates, a cut was made at 1E7 
Bq/day. There were 24 NRRs in the Northern Hemisphere that exceeded 
the latter release rate. They are listed in Table 2. The geographical 

location of the NPPs and selected NRRs is as well shown in Fig. 2. 

2.4. Radioxenon IMS measurements at CAX17, DEX33, SEX63 and 
USX75 

Measurement data used in this exercise were collected by two 
different noble gas systems employed in the IMS network (Table 3). The 
SPALAX system (Fontaine et al., 2004) at CAX17 and DEX33 collects air 
samples of about 80 m3 at ambient temperatures during cycles of 24 h. 
Each sample is dried, concentrated and purified to produce a final stable 
xenon volume of about 7.5 ml/air sample. The spectrum acquisition is 
automatically performed by high resolution γ-spectrometry (HPGe de
tector). The SAUNA system (Ringbom et al., 2003) at SEX63 and USX75 
collects air samples of about 7 m3 at ambient temperatures during cycles 
of 12 h (by combining two samples of 3.5 m3, each one being collected 
during 6 h). From each sample, the system extracts a unique stable 
xenon volume of about 1.0 ml/air sample. The spectrum acquisition is 
performed by beta-gamma coincidence detection technique (BC404 

Fig. 1. Overview of different emitters’ influence at the four selected IMS stations and for the six selected months of the Third ATM-Challenge. Numbers on the y-axis 
depict percentage contributions from individual emitters to total modeled activity concentrations based on all emitters for a given month. 

Fig. 2. Overview of the locations of different emitters and the four selected IMS stations of the Third ATM-Challenge.  
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plastic scintillator combined with a NaI detector). Both detection sys
tems have MDCs below 1 mBq/m3 for Xe-133. Over the period under 
investigation for this exercise, the observed maximum average MDC of 
all four IMS stations occurs at DEX33 with 0.33 mBq/m3. After spectrum 
acquisition at the stations, spectra are automatically sent to the IDC of 
CTBTO where they are processed, quality-controlled and analysed. 
Analysis reports are then provided to State Signatories. Like for the 
Second ATM-Challenge samples falling below the MDC were set to zero 
for the evaluation process because they cannot be reasonably quantified 
based on the radioxenon measurement. The geographical location of the 
different stations is shown in Fig. 2. Relevant meta data information on 
the selected IMS noble gas measurement systems is provided in Table 3. 

2.5. The participants and their ATM set-ups 

14 organizations from 10 countries (Australia, Austria, Canada, 
France, Japan, Republic of Korea, Sweden, United Kingdom, USA and 
Vietnam) took part in the Third ATM-Challenge (Table 4). An overview 
of the models used is provided in Table 5 together with some key pa
rameters of the model set-ups. Six Lagrangian models as well as one 

Eulerian model (LdX-C3X) and one mixed model (HYSPLIT-GEM) were 
used. ATM models employed comprise HYSPLIT(-GEM) (six participants 
& nine submissions; Stein et al. (2015)), FLEXPART (five participants & 
six submissions; Stohl et al. (1998, 2005); Pisso et al. (2019)), MLDP 
(one participant & three submissions; D’Amours et al. (2010, 2015)), 
LdX-C3X (one participant & one submission; Groëll et al. (2014); 
Tombette et al. (2014)), LODI (one participant & one submission; Ermak 
and Nasstrom (2000); Larson and Nasstrom (2002)), GEARN (one 
participant & one submission; Terada and Chino (2008); Terada et al. 
(2013)) and LADAS (one participant & eight submissions; Suh et al. 
(2006)). 

Meteorological input data (or any other kind of input data apart from 
emissions) were gathered by the participants themselves. The list of 
meteorological drivers comprises largely operational or re-analysis Eu
ropean Center for Medium-Range Weather Forecasts (ECMWF; Simmons 
et al. (1989); Ecmwf (2018)) and U.S. National Oceanic and Atmo
spheric Administration’s (NOAA’s) National Weather Service’s National 
Centers for Environmental Prediction (NCEP; Ncep (2003); Saha et al. 
(2014); Noaa (2020)) products, but also the Australian Community 
Climate and Earth-System Simulator-Global (ACCESS-G) version APS1 
(Puri et al., 2013), the Canadian Meteorological Center (CMC) Global 
Deterministic Prediction System (GDPS; Buehner et al. (2013, 2015); 
Charron et al. (2012)), the Action de Recherche Petit Echelle Grand 
Echelle (ARPEGE; Déqué et al. (1994); Déqué and Piedelievre (1995)), 
the Weather Research and Forecasting Model (WRF; Skamarock et al. 
(2008)) driven with the Grid Point Value global model from the Japan 
Meteorological Agency (GPV; Jma (2019)) and the Unified Model Global 
Data Assimilation and Prediction System (UM-GDAPS; Davies et al. 
(2005); Kma (2018, 2021); Metoffice (2021)) products. 

The ATM and meteorological driver mix is similar to the one of the 
second challenge (Maurer et al., 2018) with a slight increase in diversity. 
Whereas NAME (Jones et al. (2007); driven with UM-GDAPS) is not part 
of the ensemble in the Third ATM-Challenge, GEARN and LADAS could 
be added to the pool of models with corresponding meteorological 
drivers WRF-GPV and UM-GDAPS (Unified Model (UM) Global Data 
Assimilation and Prediction System (GDAPS) product by the Korea 
Meteorological Administration (KMA) under license from the UK 
MetOffice). One HYSPLIT run was driven with ACCESS-G APS1 of the 
Australian Bureau of Meteorology instead with NCEP-GFS as in the 
second challenge and two other ones with the recently available 
ECMWF-ERA5 (Ecmwf, 2020) re-analysis substituting the previous 
ERA-Interim ECMWF product. ACCESS-G version APS1 is also based on 
UM-GDAPS, thus incorporating the model in fact twice in the challenge. 
An aim was that not all FLEXPART runs are driven by ECMWF input data 
and not all HYSPLIT runs by NCEP data as was largely the case for the 
Second ATM-Challenge. 

Participants were encouraged to submit multiple runs, but were 
asked to submit at least one run with three-hourly meteorological input 
resolution and 0.5◦ horizontal output resolution spanning the time frame 
July to September 2014. If computationally possible the full six months 
period June to November 2014 was considered (managed by 13 out of 
the 16 participants). Particle aging (i.e., tracking the particles of a spe
cific release just for a pre-defined amount of time) was employed to 
partly overcome computational limitations. Participants applied 
different meteorological drivers in different spatial resolutions (how
ever, mostly 1.0◦ and 0.5◦). There were up to eight contributions per 

Table 2 
Country, facility name, geographical location, and Xe-133 emissions for the 24 
NRRs of the Northern Hemisphere considered in the Third ATM-Challenge.  

Country Facility Name Longitude 
[◦E] 

Latitude 
[◦N] 

Emission/ 
day [Bq] 

United States 
of America 

ATR − 112.97 43.59 3.85E08 

Russian 
Federation 

VK-50 49.48 54.19 2.43E08 

India DHRUVA 72.90 19.01 1.54E08 
Russian 

Federation 
SM-3 49.48 54.19 1.07E08 

Russian 
Federation 

MIR.M1 49.48 54.19 9.48E07 

United States 
of America 

HFIR − 84.30 35.92 6.05E07 

Belgium BR-2 5.10 51.22 5.93E07 
France ILL High Flux 

Reactor 
5.69 45.21 5.53E07 

Russian 
Federation 

BOR-60 49.52 54.20 5.51E07 

China HFETR 103.55 29.73 4.45E07 
India FBTR 80.17 12.55 2.96E07 
Canada NRU − 77.36 46.05 2.75E07 
Poland MARIA 21.34 52.12 2.54E07 
Korea, 

Republic of 
HANARO 127.37 36.43 2.49E07 

Germany FRM II 11.68 48.27 2.02E07 
Russian 

Federation 
IVV-2M 61.32 56.84 1.96E07 

Norway HBWR 11.40 59.13 1.66E07 
Romania TRIGA II PITESTI 

- SS CORE 
24.98 44.95 1.66E07 

Germany BER-II 13.13 52.41 1.54E07 
France OSIRIS 2.15 48.73 1.43E07 
China CEFR 116.03 39.74 1.33E07 
United States 

of America 
MURR Univ. of 
Missouri- 
Columbia 

− 92.34 38.93 1.32E07 

China CARR 116.14 39.75 1.22E07 
France Orphee 2.15 48.73 1.16E07  

Table 3 
Relevant information on the selected IMS noble gas measurement systems.1 Average collection stop. Collection stops often vary somehow, especially over extended 
time periods.  

Station code Longitude [◦E] Latitude [◦N] Elevation [m a.s.l.] System Collection stop (UTC) [HH:MM]1 Collection time [h] 

CAX17 − 52.74 47.59 205 SPALAX 13:30 24 
DEX33 7.92 47.92 1208 SPALAX 06:00 24 
SEX63 17.95 59.40 51 SAUNA 00:00 12 
USX75 − 78.40 38.00 104 SAUNA 04:00 12  
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organization. Depending on the IMS station overall 29 to 31 modeled 
time series were gathered. 

All participants modeled daily IRE & CNL releases based on a date- 
time template and unit emissions (183 per facility, 1 Bq per daily 
release) tracked individually as it was the case for the Second ATM- 
Challenge for ANSTO emissions (see Maurer et al. (2018), specifically 
subsection 2.7 therein). Individual SRS values had to be scaled and 
summed for each station and collection period during the evaluation. A 
unit emission approach had already been applied by Maurer et al. 
(2018). It has several advantages: 1) Most importantly it enabled 
participation in the challenge without the absolute need to sign a vDEC 
agreement (Ctbto, 2020a) in order to access confidential emission data, 
2) different kinds of emissions can be taken into account even after the 
runs are completed, and 3) it was hardly possible to tune the runs to
wards IMS measurements which most of the participants have access to. 
However, due to experiences recently gathered within the CTBT com
munity (see the introduction) only daily resolution of stack data was 
considered. Higher temporal resolutions were no longer taken into ac
count for the Third ATM-Challenge. 

Nuclear reactors and remaining radiopharmaceutical production and 
nuclear research facilities were added by most of the participants (for all 
but six runs) employing daily (NPPs) or disaggregated annual (NRRs and 
remaining radiopharmaceutical production and nuclear research facil
ities) releases. However, including NPPs (168), NRRs (24) and addi
tional radiopharmaceutical facilities was optional. These releases – if 
taken into account – did not need to be tracked individually as no scaling 
of releases was intended. For all those participants that simulated only 
IRE and CNL emissions (ARPANSA, IRSN, JAEA-1 and JAEA-2) ZAMG’s 
results for nuclear reactors and the remaining radiopharmaceutical fa
cilities were added for major parts of the evaluation in agreement with 
participants. In case of NOAA-ARL HYSPLIT-GEM results for nuclear 
reactors and remaining radiopharmaceutical facilities were added to 
NOAA-ARL HYSPLIT results. 

Since IMS radioxenon measurement systems report activity concen
trations referenced to a standard atmosphere (0◦ C, 1013.25 hPa; Ctbto 
(2008)), modeled ambient activity concentrations at DEX33 - with the 
exception of BOKU’s and VINATOM’s submissions which had already 
been accounting for this effect - were corrected by multiplying the 
provided time series values with the quotient of standard density (ρ =
1.2754 kg/m3) and average output layer ambient density. This pro
cedure improved scores for those participants (e.g., ZAMG or CMC) who 
had sampled a model output layer at Mount Schauinsland several 100 m 
above the surface as it is depicted in a smoothed model topography. 

As already stated above one aim of the current exercise was to in
crease model diversity as much as possible under the given constraints 
(i.e., participating institutions being largely confined to well-established 
atmospheric transport models like FLEXPART and HYSPLIT and preva
lent meteorological data sources like ECMWF and NCEP). Therefore, set- 
up parameters of the dispersion runs were controlled as much as possible 
in the current challenge. Before starting their runs, participants were 
asked to give feedback to the scenario team regarding their planned set- 
up (see also Table 5) within two weeks after the launch of the challenge 
and to tell the scenario team how flexible they are in possibly changing 
the set-up. The scenario team finally asked some participants for a 

Table 4 
Participants of the Third ATM-Challenge. Organizations participating in the 
second challenge are printed bold. *Involved in drafting the challenge.  

Organization 
Abbreviation 

Name(s) of 
participant(s) 

Organization full name Submission 
(s) 

ARPANSA/ 
BOM 

Blake Orr, Alan 
Wain 

Australian Radiation 
Protection and Nuclear 
Safety Agency, 
Yallambie/Miranda, 
Australia and Bureau of 
Meteorology, Melbourne, 
Australia 

ARPANSA1− 2 

AWE/UK-NDC Rich Britton, 
Ashley Davies, 
Matthew Goodwin 

Atomic Weapons 
Establishment/United 
Kingdom-National Data 
Center, Aldermaston, 
Reading, UK 

AWE1− 2 

BOKU Petra Seibert University of Natural 
Resources and Life 
Sciences, Institute of 
Meteorology and 
Climatology, Vienna, 
Austria 

BOKU1− 2 

CTBTO Michael 
Schoeppner 

Comprehensive Nuclear- 
Test-Ban Treaty 
Organization, Onsite 
Inspection Division, 
Vienna, Austria 

CTBTO-1 

CTBTO* Jolanta 
Kuśmierczyk- 
Michulec 

Comprehensive Nuclear- 
Test-Ban Treaty 
Organization, 
International Data 
Center, Vienna, Austria 

CTBTO-21− 2 

ECCC-CMC Alain Malo Environment and 
Climate Change Canada, 
Meteorological Service of 
Canada, Canadian 
Meteorological Center, 
Environmental 
Emergency Response 
Section, RSMC Montréal, 
Dorval, Québec, Canada 

CMC1− 3 

FOI Anders Axelsson, 
Anders Ringbom 

Swedish Defence 
Research Agency, 
Stockholm, Sweden 

FOI 

IRSN Arnaud Quérel, 
Olivier Saunier, 
Denis Quélo 

French Institute for 
Radiation protection and 
Nuclear Safety, 
Fontenay-aux-Roses, 
France 

IRSN 

JAEA Yuichi Kijima Japan Atomic Energy 
Agency, Tokai, Ibaraki, 
Japan 

JAEA-1 

JAEA Akiko Furuno Japan Atomic Energy 
Agency, Tokai, Ibaraki, 
Japan 

JAEA-2 

KAERI Kihyun Park, 
Kyung-Suk Suh 

Korea Atomic Energy 
Research Institute, 
Daejeon, Republic of 
Korea 

KAERI1− 8 

LLNL Lee G. Glascoe, 
Donald D. Lucas, 
Sara Cicchi, Phil 
Vogt 

National Atmospheric 
Release Advisory Center 
at the Lawrence 
Livermore National 
Laboratory, Livermore, 
California, USA 

LLNL 

NOAA-ARL Alice Crawford, 
Ariel Stein, 
Tianfeng Chai, 
Fong Ngan 

National Oceanic and 
Atmospheric 
Administration Air 
Resources Laboratory, 
College Park, Maryland, 
USA 

NOAA- 
ARL1− 3 

PNNL Paul W. Eslinger Pacific Northwest 
National Laboratory, 
Richland, Washington, 
USA 

PNNL 

VINATOM Pham Kim Long VINATOM  

Table 4 (continued ) 

Organization 
Abbreviation 

Name(s) of 
participant(s) 

Organization full name Submission 
(s) 

Vietnam Atomic Energy 
Institute, Hanoi, Vietnam 

ZAMG* Christian Maurer Zentralanstalt für 
Meteorologie und 
Geodynamik, Vienna, 
Austria 

ZAMG  
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Table 5 
Models and set-ups used. Columns from left to right indicate the ID of the submission, the name of the atmospheric transport model (ATM), the meteorological model providing the meteorological input (NWP), the 
horizontal and vertical resolution (with number of model levels below 2.5 km including the surface level) of the meteorological input (Meteorological input resolution Δx & Δz), adaptive time step used yes or no (with a 
constant time step or the factor by which the time step must be smaller than the Lagrangian time scale provided), the bottom and top height(s) of the ATM output layer(s) starting at the surface (SFC) used for activity 
concentration averaging and temporal output resolution (Output resolution zb - zt & Δt), the ATM simulation direction (forward in time from the source/FWD or backward in time from a receptor/BWD), IRE and CNL 
considered as emitters only yes or no, the total number of particles released per hour (Total #particles/hour released, k = 1000, M = 1 million), the simulation period and the number of days an individual release was 
tracked (Release cut-off threshold).  

ID ATM NWP Meteorological input 
resolution 

Adaptive time step 
(seconds or factor) 

Output resolution Simulation 
direction 

IRE & 
CNL 
only 

Total #particles/ 
hour released 

Simulation 
period 

Release cut-off 
threshold [days] 

Δx (◦) Δz (m) (# 
levels below 
2.5 km) 

zb - zt (m) Δt 
(h) 

ARPANSA1,2 HYSPLIT 4.2.0 
MPI 

ACCESS-G APS1 0.375 x 
0.5625 

20-7870 (19) Yes SFC-100 or 100-500a 1 FWD Yes 28.8 k June–November 14 

AWE1 HYSPLIT 4.2.0 NCEP-GFS- 
operational 

1.0 200-400 (8) Yes SFC-200 12/ 
24 

FWD No 2 M June–November simulation 
duration 

AWE2 HYSPLIT 4.2.0 NCEP-GFS- 
operational 

0.5 10-540 (23) Yes SFC-200 12/ 
24 

FWD No 2 M June–November simulation 
duration 

BOKU1 FLEXPART 
10.4 

ECMWF-IFS- 
operational 

0.5 10-5700 (30) Yes (3) Receptor output 0.5 FWD No 187.5 kb June–November 14 

BOKU2 FLEXPART 
10.4 

ECMWF-IFS- 
operational 

0.5 10-5700 (30) Yes (3) SFC-100c 24 BWD No 166.7 k (41.6 k 
per station) 

June–November 14 

CMC1 MLDP GDPS-analysisd 0.22x0.35 40-1500 (15) No (600 s) SFC-500 1 FWD No 6.6 Me June–November 21 
CMC2 MLDP GDPS-analysisd 0.22x0.35 40-1500 (15) No (600 s) 500–1000 1 FWD No 6.6 Me June–November 21 
CMC3 MLDP GDPS-analysisd 0.22x0.35 40-1500 (15) No (600 s) SFC-100 1 FWD No 6.6 Me June–November 21 
CTBTO-1 FLEXPART 

9.3.2 
ECMWF-IFS- 
operational 

0.5 10-5700 (30) No (900 s) SFC-150 1 BWD No 283.33 k July–September 14 

CTBTO-21,2
f FLEXPART 

9.3.2 
ECMWF-IFS- 
operational 

0.5 10-5700 (30) No (900 s) SFC-150 or SFC-700g 1 FWD No 283.33 kh June–November 14 

FOI HYSPLIT 4 
rev.761 MPI 

NCEP-GDAS 1.0 111-4000 (9) Yes SFC-100 3 FWD No 150 k June–November 14 

IRSN LdX-C3X ARPEGE 0.5 40-2200 (9) No (600 s) SFC-40 1 FWD Yes Eulerian model June–November simulation 
duration 

JAEA-1 HYSPLIT 4.2.0 NCEP-GDAS 0.5 40-3400 (18) Yes SFC-100 1 FWD Yes 15 k July–September 14 
JAEA-2 GEARN GPV-WRF 0.5 50-750 (12) No (30 s) SFC-20 2 FWD Yes 104.2 k July–September 20 
KAERI1− 8

i LADAS UM-GDAPS 
(KMA) 

0.35 x 0.23 100-3500 (5) No (300 s) SFC-100 for SEX63 and USX75, 100–550 
or 100–200 for CAX17, 550–800 or 
700–800 for DEX33 

1 FWD No 1.5 Mj June–November 30 

LLNL LODI NCEP-GFS- 
operational- 
ADAPT 

0.5 15-1200 (30) Yes SFC-20/34 (terrain dependent)k 1 FWD No 166.7 k June–November 30 

NOAA-ARL1 HYSPLIT-GEM 
4.2.0 

NCEP-GDAS 1.0 200-400 (8) No (600 s) SFC-100 12/ 
24 

FWD No Eulerian model June–November 31              

NOAA-ARL2 HYSPLIT 4.2.0 ECMWF-ERA5 0.5 200 (11) No (600 s) SFC-200 12/ 
24 

FWD Yes 1 M June–November 31 

NOAA-ARL3 HYSPLIT 4.2.0 ECMWF-ERA5 0.5 200 (11) No (600 s) SFC-500 12/ 
24 

FWD Yes 1 M June–November 31 

PNNL HYSPLIT 4 
svn:951 

NCEP-GDAS 0.5 10-540 (23) Yes SFC-100 1 FWD No 980 kl June–November 24 

VINATOM FLEXPART 
10.4 

NCEP-CFSv2 0.5 111-25908 (9) Yes (3) Receptor output 0.5 FWD No 187.5 kb June–November 14 

ZAMG FLEXPART 
10.3-beta 

ECMWF-IFS- 
operational 

0.5 10-5700 (30) No (900 s) SFC-100 or 500–600m 1 FWD No 222.2 kn June–November 15  

a for DEX33 and ARPANSA2, second submission for DEX33 only. 
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change in set-up parameters in order to try to enhance diversity. For the 
three FLEXPART forward runs based on ECMWF data, two (BOKU1 & 
ZAMG) were made with convection and subgrid-scale terrain effects on 
boundary layer height enabled and one (CTBTO-2) with just the latter 
parameterization activated. Two (BOKU1 & VINATOM) of the three 
FLEXPART forward runs with both parameterizations turned on used 
actual receptor output. Finally, FLEXPART runs are different in terms of 
meteorological input (NCEP-CFSv2 for VINATOM versus ECMWF-IFS for 
the rest), the simulation direction (backward for BOKU2 and for CTBTO- 
1 versus forward for the rest), the output grid resolution (BOKU2 
employed a grid with 0.08◦x0.05◦ resolution around IRE and CNL as 
well as a hemispheric grid with 0.5◦ resolution) and the internal time 
step (constant for CTBTO-1, CTBTO-2 and ZAMG; adaptive for BOKU1, 
BOKU2 and VINATOM). 

There was also some coordination among the groups running HYS
PLIT to try to create runs which were different from each other. Four 
different meteorological inputs were utilized (NCEP-GFS, NCEP-GDAS, 
ECMWF-ERA5 and ACCESS-G APS1). Additionally, the HYSPLIT-GEM 
(Global Eulerian Model) was used for one run. HYSPLIT has several 
(physics) options which can be varied. These include different options 
for computing the boundary layer stability, variance of the turbulent 
velocity distribution, and mixing layer depth. For the most part, default 
parameters were used. JAEA utilized the option for estimating the 
mixing layer depth from the temperature profile instead of using the 
Numerical Weather Prediction (NWP) model input. NOAA-ARL also 
used wind and temperature profiles to calculate boundary layer stability 
rather than the default which is to use heat and momentum fluxes. The 
default time step is a variable time step with a minimum of 1 min. PNNL 
utilized the variable time step with a minimum of 5 min and NOAA-ARL 
used a constant 10 min time step. 

2.6. Statistical methods 

The statistical methods cover two different aspects: 1) run perfor
mance evaluation and 2) optimum ensemble construction. 

2.6.1. Run performance evaluation 
In order to make the results of the Third and Second ATM-Challenge 

as comparable as possible, largely analogous scores (details can be found 
in Maurer et al. (2018)) were evaluated and again four of them (deter
mination coefficient (R2), fractional bias (FB), fraction within a factor of 
5 (F5) and accuracy (ACC)) combined into an equally-weighted rank 
number spanning the interval [0,4]: 

Rank = R2 +

(

1 −
|FB|

2

)

+ F5 + ACC (1) 

To take additionally into account the similarity or dissimilarity in the 
distribution of observed and modeled sample activity concentrations, 
the rank was amended by the Kolmogorov-Smirnov Parameter (KSP): 

RankKS = Rank + (1 − KSP / 100) (2)  

which is provided in addition to the original rank metric for the current 
challenge. RankKS takes values in the interval [0,5]. The KSP is defined 
as: 

KSP = Max|D(Mk) − D(Ok)|100% (3)  

where D is the cumulative distribution of the modeled and observed 
concentrations over the range of k values such that D is the probability 
that the concentration will not exceed a modeled Mk or observed Ok. The 
score measures the ability of the model to reproduce the observed 
concentration distribution regardless of space and time. The maximum 
difference between any two distributions cannot be more than 100%. 

Further, the bias-corrected root mean square error BCRMSE was 
introduced to replace the root mean square error (RMSE) as employed in 
the Second ATM-Challenge: 
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BCRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑
[(Mk − M) − (Ok − O)]

2

√

(4)  

with M and O being the average modeled and observed values. BCRMSE is 
subsequently involved in another skill score definition. 

Alternatively compared to equations (1) and (2) and following 
Taylor (2001) the bias-corrected root mean square error, BCRMSE, 
considered implicitly via observed and modeled standard deviations in 
combination with the correlation coefficient, can be used as basis to 
define a skill score Sr, however, attributing higher weight to the ratio of 
standard deviations compared to R: 

Sr = 2(1+R)
(

σm

σo
+

σo

σm

)− 2

(5)  

with σm and σo being the standard deviations of modeled and observed 
values. The definition ensues the idea that for any given variance, Sr 
should increase monotonically with increasing correlation and for any 
given correlation the score should increase as the modeled variance 
approaches the observed variance. As σm -> σo and R -> 1 (equivalent to 
BCRMSE -> 0), the skill score reaches unity (interval [0,1]). However, at 
lower correlation values, models with too little variability are penalized 
in equation (5) despite a possible reduction in the BCRMSE. 

If one wants to include also the fractional bias FB into the skill score, 
Seibert (2004) suggests a formulation to transform the fractional bias 
into a skill score Sb spanning the interval (0,1]: 

Sb =
1

1 + bFB2 (6) 

The parameter b is introduced in order to yield a skill score 
converging to 0 for large values of FB2 (upper limit of FB2 is 4). A value 
of b = 10 appears to give a relationship fulfilling Seibert (2004)’s sub
jective idea about such a skill score. Finally, both individual skill scores 
can be combined into a total skill score SS: 

SS = αSr + (1 − α)Sb (7) 

The value of α is rather arbitrary and depends on the application. α =
0.5 as adopted in the current study might be acceptable. An additive and 
not a multiplicative combination of the two scores is suggested because a 
model that has skill either in reproducing the mean (expressed via Sb) or 
in reproducing the pattern (expressed via Sr) should be attributed some 
total skill; the product of the two scores would be zero with one of the 
factors being zero. 

2.6.2. Optimum ensemble construction 
The ensemble analysis is performed according to the sequence of 

steps listed below. The various steps have the scope of selecting the 
ensemble features that allow to harness the best accuracy while preserving 
the variability. As demonstrated by, e.g., Solazzo et al. (2013) and ref
erences therein, this is achieved by promoting diversity among the 
members of the ensemble and thus discarding any redundant informa
tion retaining the highest level of independence among the remaining 
models. It is important that the pool of available members is numerous 
for the feature selection algorithms presented hereafter to be successful. 
The analysis is performed for the period of June to November 2014 
independently at the four locations where measurements are available, 
namely CAX17, DEX33, SEX63 and USX75, and limited to above MDC 
samples. 

● Rank histogram: The first analysis performed with the available en
sembles is to construct rank histograms or Talagrand diagrams 
(Talagrand et al., 1997) where the number of bins equals the number 
of ensemble members +1 to equally subdivide the range of all ranked 
simulations. Subsequently, the observations are distributed in the 
corresponding bins. A balanced ensemble will result in a flat 

histogram as bins within the range of modeled values have equal 
probability of accommodating observations.  

● Analysis of the correlation matrix: In the presence of large ensembles 
one should investigate the occurrence of repeating information that 
would not add any new element to the ensemble analysis by 
inspecting the correlation matrix of all model results and exclude 
those that correlate above a predefined threshold value (in this work 
0.95). This enables skipping redundant data sets in part of the sub
sequent calculations which are numerically intensive.  

● Determination of the effective number of models: This analysis provides 
an estimate of the level of independence of the ensemble members 
and the minimum number of degrees of freedom (each model is 
intended as a degree of freedom, as it would theoretically bring new, 
unexplored information to the ensemble) sufficient to reproduce the 
variance of the observations. From Bretherton et al. (1999) we 
calculate the number of effective models sufficient to reproduce the 
variability of the full ensemble N (the multi-model ensemble gener
ated with all available members) as: 

Neff =
( ∑N

n=1λk
)2

∑N
n=1λ2

k

(8)  

with λk as eigenvalues of the corr(di, dj) matrix, the matrix of the linear 
correlation coefficients between any pair di, dj(i, j = 1 … N). d is a metric 
defined according to Pennel and Reichler (2011): 

dm = em − ReM (9)  

where the index m identifies the model, eM is the multi-model error (the 
average over all individual models’ errors) and R is the Pearson corre
lation coefficient between em, the error of model m, and eM. The removal 
of eM in equation (9) makes model errors more dissimilar and uncovers 
“hidden” features that are otherwise outweighed by overarching com
monalities. The aim of the metric dm is to establish similarities among 
models beyond the more obvious ones induced by shared inputs and/or 
common parameterisations. Only if all eigenvalues were equal to unity, 
equation (8) would return Neff = N, which corresponds to the situation 
where all eigenvector directions are present and equally relevant. On the 
other hand, if all error fields were similar, all eigenvectors would 
collapse onto one and Neff = 1.  

● Determination of statistical indicators for all possible ensemble linear 
combinations: For all combinations of n ensemble members, where n 
goes from one to the total number of models, Root Mean Square 
Errors (RMSEs) and Pearson Correlation coefficients (Rs) are calcu
lated. In case of redundancy, the optimal combination (min. RMSE 
and max. R) is not reached for the full-member ensemble but rather 
for a subset of it. The smaller the subset, the higher the redundancy.  

● Promoting diversity by using weighted ensemble combinations: This 
analysis allows to determine the level of proximity of the various 
ensemble members and the level of clustering of the results. It is 
based on a selection of thresholds of the values dm and the clustering 
is represented in terms of bifurcations in a dendrogram whenever a 
threshold level is passed. The level of proximity also determines the 
weight of each member: the higher the associativity (lower dm), the 
lower the weight and vice versa. The optimal weights applied to the 
modeled time series are those that minimize the RMSE of the 
ensemble. The approach generates a multi-model ensemble that pe
nalizes commonalities without discarding any member. Weights are 
assigned to individual runs according to i) the optimal number of 
clusters, and ii) the number of models composing each cluster. The 
algorithm starts with a minimum of two clusters and assigns a weight 
of 12 to each (the total weight to be assigned sums up to unity). If there 
are, for example, 20 members in total and, for example, the first 
cluster is composed of fifteen members and the second cluster of five, 

then to each member of the first cluster a weight of 1
30 (

1
2

15) is assigned 
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while to the members of the second cluster a weight of 1
10 (

1
2
5). The 

next loop of the algorithm then checks whether a larger number of 
clusters generates a weighted ensemble mean with lower RMSE. The 
looping stops when the RMSE cannot be minimized any further. 

3. Results and discussion 

3.1. Evaluating the added value of IRE and CNL stack emission data 
versus literature emission estimates 

In the following subsections the added value of IRE and CNL stack 
emission data is inspected under different perspectives. 

3.1.1. Analysis including all valid model-observation pairs 
In a first step it was investigated what the average benefit of using 

actual historic daily stack emission compared to disaggregated literature 
emission data for IRE and CNL radiopharmaceutical plants would be. For 
this purpose, statistics were averaged over all four selected IMS stations, 
over all available and valid model-observation pairs between June, 8th, 
to November, 30th, or July, 8th, to September 30th, 2014 and over all 
submitted runs. Thus, a spin-up period for civil radioxenon background 
establishment of seven days was warranted. The latter two six and three 
month periods constitute the two analysis periods for the Third ATM- 
Challenge. In terms of Rank, RankKS and SS (see Table 6) it has to be 
concluded that there is no average benefit from using daily IRE & CNL 
stack emission data over all possible valid model-observation pairs in
dependent of the score employed. Table 6 rather slightly indicates the 
opposite with only Rmax, SS and SSmax for stack data outperforming the 
respective numbers for literature estimates in case all emitters (not just 
IRE & CNL) are considered. However, the latter finding must in any case 
be considered case specific and can be due to compensating errors of 
different kinds of emissions as well as of emissions and transport 
modeling. Conclusions to be drawn are the same for both time periods. 
Moreover, median scores are very similar indicating no relevant sea
sonal influence on overall scores. If all emitters and related emissions 
were to be known perfectly and ATM was perfect too, stack emissions 
would undoubtedly always outperform literature estimates signifi
cantly. The results found simply reflect the imbalance between two 
emitters perfectly characterized on one side and many emission and 
transport related errors on the other. 

Nevertheless, despite the remaining known emitters, i.e. emitters 
apart from IRE and CNL, may be poorly characterized, there is an added 
value of approximately 18% of including these roughly estimated 
emissions in ATM runs. This finding is supported invariably by all scores 

in Table 6 and is in agreement with a finding from the First ATM- 
Challenge (Eslinger et al., 2016) where best results for DEX33 pre
dictions were found if additional source estimates were included apart 
from IRE stack emission data. However, the picture differs considerably 
for CAX17 and USX75 on one side and DEX33 and SEX63 on the other. 
The reader is referred for related details to subsection A.1 in the 
appendix. 

3.1.2. Analysis including samples with major influences of IRE & CNL 
In a next analysis step it was postulated that the statistical benefit of 

stack emission data depends on the samples selected: The higher the 
influence of MIPFs IRE and/or CNL on a given sample the higher the 
benefit of using stack emission data should be. The necessary selection 
process is bound to two important aspects: 1) The influence on any 
observed sample can only be properly quantified if its value is greater 
than or equal to the MDC. 2) As a matter of fact any qualitative or 
quantitative influence of a certain emitter on an observed sample can 
only be stated based on ATM. Because of this inherent shortcoming 
different approaches and a step-wise procedure were applied:  

1. Selecting samples according to the MDC: As stated in section 2.4 below 
MDC samples were set to zero for the purpose of model evaluation. 
This inevitably leads to small values being overpredicted by models. 
Nevertheless, the approach does not lead to a distinct influence on 
Rank, RankKS and SS. Averaged over all four stations scores do not 
change substantially when switching from all valid observed samples 
to those reaching at least the MDC as displayed in Fig. 3. At least 65% 
of samples per IMS station are retained (compare sample numbers in 
the caption of Fig. 3) if omitting below MDC values.  

2. Determining MIPF impact based on different ATM realizations: MIPFs’ 
impact using stack emission data was calculated based on (A) 
FLEXPART V9 backward runs or a (B) FLEXPART V9-CTBTO forward 
run (see runs from CTBTO-2 in Table 5) and (A) 1◦ or (B) 0.5◦

meteorological input and output resolution (operational CTBTO/IDC 
set-up as of 2014 or set-up for the Third ATM-Challenge 2019, 
respectively).  

3. Calculating MIPF impact ratios: Finally, the following ratios (modes 1, 
1a and 2) were formed. Alternatively to using observed samples 
(modes 1 and 1a), the CTBTO forward run (CTBTO-2) was also used 
to evaluate the ratio tagged as mode 2 based entirely on simulations: 

|measurement − MIPFs′ contributions|
measurement

(mode 1)  

measurement − MIPFs′ contributions
measurement

(mode 1a)  

NPPs′

+ NRRs′

+ other radiopharmaceutical facilities′ contributions
total simulated value

(mode 2) 

Samples were only selected if the above quotients stayed below 50% 
or even 20% (equivalent to at least 50% and 80% IRE and CNL impact). 
Mode 1 was chosen in order to demonstrate the effect of implictly 
removing sample pairs from the data set which clearly suffer from 
transport errors, i.e., from an overestimation by at least 20% or 50% of 
the measurement by just considering IRE and/or CNL emissions. 

Figs. 3 and 4 reflect the selection effect based on selection criterion 
A1 (FLEXPART V9 bwd runs in combination with mode 1). Including all 
valid sample pairs or only sample pairs where the observed value is 
equal to or exceeds the MDC into the analysis yields a rather fuzzy 
picture with literature emissions outperforming stack emissions for 
SEX63 based on all scores, stack emissions outperforming literature 
emissions for USX75 based again on all scores and results depending on 
the score for CAX17 and DEX33. Selecting only samples with at least 
50% or even 80% influence of IRE and/or CNL emissions leads to the 
expected result of stack emissions overall outperforming literature 

Table 6 
Statistical scores (median [min., max.]) over all four selected IMS stations, over 
all available and valid model-observation pairs from June, July, respectively, 
8th, to September, November, respectively, 30th, 2014 and over all submitted 
runs depending on the type of emissions included in ATM runs.   

Rank RankKS SS 

All emitters, stack emissions, 
Jun.–Nov. 

2.32 [1.31, 
2.78] 

3.10 [1.85, 
3.65] 

0.49 [0.18, 
0.75] 

All emitters, literature emissions, 
Jun.–Nov. 

2.51 [1.36, 
2.76] 

3.32 [1.90, 
3.65] 

0.48 [0.19, 
0.59] 

IRE & CNL stack emissions only, 
Jun.–Nov. 

2.02 [0.90, 
2.44] 

2.67 [1.50, 
3.19] 

0.37 [0.07, 
0.55] 

IRE & CNL literature emissions 
only, Jun.–Nov. 

2.20 [1.07, 
2.59] 

2.91 [1.54, 
3.38] 

0.41 [0.09, 
0.57] 

All emitters, stack emissions, 
Jul.–Sep. 

2.39 [1.47, 
2.91] 

3.13 [2.02, 
3.73] 

0.51 [0.16, 
0.71] 

All emitters, literature emissions, 
Jul.–Sep. 

2.55 [1.48, 
2.93] 

3.36 [2.03, 
3.78] 

0.48 [0.18, 
0.66] 

IRE & CNL stack emissions only, 
Jul.–Sep. 

1.96 [0.96, 
2.41] 

2.58 [1.53, 
3.10] 

0.43 [0.12, 
0.56] 

IRE & CNL literature emissions 
only, Jul.–Sep. 

2.24 [1.05, 
2.59] 

2.96 [1.64, 
3.33] 

0.45 [0.12, 
0.65]  
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emissions. However, differences in performance are rather small. For the 
50% influence selection average improvements over all four stations 
vary between 5% for Rank and RankKS and 20% for SS, for the 80% 
influence selection over three stations (excluding DEX33 due to the 
limited amount of involved samples) between 5% for SS and 8% for 
Rank and RankKS. One might expect a better performance for the 80% 
influence selection, but it is important to note that scores for both in
fluence selections are based on quite different numbers of underlying 
samples. Samples are reduced to at least 1/3 if switching from the 50% 
to the 80% influence selection. A higher influence of IRE and/or CNL 
does not guarantee that a specific activity concentration can be pre
dicted more successfully with ATM. Further, influence estimates them
selves are affected by ATM uncertainties. 

Not surprisingly results from approach A1 or B1 (not plotted) are 
most in favor of stack emission data due to the selection of samples 
influenced at least to 50% or 80% by IRE and/or CNL and suppressing at 
the same time samples with evident ATM errors. Weakest evidence for 
the benefit of stack data comes from approach B2 (also not plotted) 
where just modeled values are involved. 

For an overall quantitative assessment median scores were first 
averaged over all four stations for stack as well as literature emissions 
separately for the different data sets (≥MDC, A1, B1, B1a and B2). Next, 
the relative score improvements for literature and stack emission data 
separately when switching from all above MDC samples to a specific 
50% or 80% selection or from literature to stack emission data within a 
specific 50% or 80% influence data selection were averaged over the 
RankKS and the SS metrics. The Rank was skipped in this averaging 
process because it is too similar to the RankKS. Finally, averaging was 
done over all four selection approaches (A1, B1, B1a and B2). The 

analysis gives an impression of the impact of sample selection versus 
emission data selection. In fact selecting samples according to IRE and/ 
or CNL influence, but using literature emission data only has a bigger 
positive impact than switching from literature to stack emission data 
(Table 7). Roughly two third of the overall improvement is achieved 
when samples are selected according to a considerable IRE and/or CNL 
influence and only one third when switching from literature to stack 
emission data. Encompassing all individual data selections three 
maximum relative improvements in Table 7 are allotted to A1, two to B1 
and one to B1a. On the other side three minimum relative improvements 
in Table 7 are allotted to B2, two to B1 and one to B1a. Whether one uses 
the 50% or 80% selection criterion does not matter. 

3.1.3. Analysis including samples related to outstanding emissions of IRE or 
CNL with regard to the average 

Finally, a few outstanding daily stack emissions (outstanding with 
respect to the mean daily value as deduced from disaggregating the 
annual sum) and related samples modeled by the CTBTO forward run 
(CTBTO-2) were selected subjectively. The aim was to bias the subse
quent outcome in terms of an added value of stack emission data. This 
approach does not raise the claim to be a full statistical evaluation. 
Rather it shall exemplify the interaction of different emission sources 
contributing to a modeled sample as well as the entanglement of possible 
emission and atmospheric transport errors. Fig. 5 displays the daily stack 
emission profiles for IRE and CNL. As can be extracted from the figure 
the disaggregated annual literature estimates and the average daily 
values based on stack emission data agree remarkably well, especially 
for CNL. Starting with a large daily deviation from the average it was 
checked whether this specific emission is related to an above MDC 

Fig. 3. Performance of stack emission versus 
literature emission data from IRE and CNL 
with no sample selection applied (upper 
panel) and for samples reaching at least the 
MDC (lower panel). Median score values per 
IMS station are displayed. All emitters are 
included. Full color bars indicate the use of 
stack emission data, dashed color bars the 
use of literature emission data. “S”: stack 
emission data outperform literature emission 
data based on all three scores, “L”: literature 
emission data outperform stack emission 
data based on all three scores, “S/L”: stack 
emission data outperform literature emission 
data based on either Rank and RankKS or 
based on SS. Number of involved samples per 
IMS station with no selection applied: 
CAX17: 155, DEX33: 136, SEX63: 345, 
USX75: 333. Number of involved samples per 
IMS station reaching at least the MDC: 
CAX17: 118, DEX33: 88, SEX63: 241, USX75: 
236. (For interpretation of the references to 
color in this figure legend, the reader is 
referred to the Web version of this article.)   
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sample. In case of the IRE emission profile samples at SEX63 were 
consulted, in case of the CNL emission profile samples at USX75. These 
two stations were chosen because of their 12-hourly collection periods 
which in theory should be better suited to demonstrate the added value 
of stack emission data compared to the 24-hourly collection periods of 

the two other stations investigated in the frame of the challenge. If a 
sample above the MDC was found related to a large daily deviation from 
the average emission the full footprint of it, i.e. all daily emission chunks 
with contribute to the sample, was marked on the respective emission 
profile. The footprints cover two to eight daily emission chunks. Thus, it 
becomes clear that – depending on the station sensitivity with respect to 
an emission chunk – positive and negative deviations from the average 
line may easily conteract. 

In case of IRE and SEX63 stack emission data are beneficial in 2/3 of 
the selected cases (compare second and last two columns of Table 8). 
However, deviations are minor for four cases (in the 0.01 mBq/m3 range 
of magnitude) and only add up to roughly a factor of two in two cases. It 
is only for the latter two samples (with collection starts at 2014090300 
and 2014101300) that switching between the two types of MIPF emis
sion data results in substantial differences with noteworthy overall 
simulation improvements occurring alternately for stack and literature 
data. Not unexpectedly, for all six selected cases the IRE (together with 
CNL in the case of the sample with collection start 2014100300) stack 
emission based contributions alone do not explain the station signal. 

Fig. 4. Performance of stack emission versus 
literature emission data from IRE and CNL 
for samples with at least 50% (upper panel) 
and 80% (lower panel) influence of IRE and/ 
or CNL. Median score values per IMS station 
are displayed. All emitters are included. Full 
color bars indicate the use of stack emission 
data, dashed color bars the use of literature 
emission data. “S”: stack emission data 
outperform literature emission data based on 
all three scores, “L”: literature emission data 
outperform stack emission data based on all 
three scores, “S/L”: stack emission data 
outperform literature emission data based on 
either Rank and RankKS or based on SS. 
Number of involved samples per IMS station 
with at least 50% influence of IRE and/or 
CNL: CAX17: 45, DEX33: 19, SEX63: 43, 
USX75: 64. Number of involved samples per 
IMS station with at least 80% influence of 
IRE and/or CNL: CAX17: 12, DEX33: 3, 
SEX63: 15, USX75: 21. (For interpretation of 
the references to color in this figure legend, 
the reader is referred to the Web version of 
this article.)   

Table 7 
Average relative statistical improvements [%] including minimum and 
maximum over all four IMS stations and all four ratio formulations evaluated 
(A1, B1, B1a and B2). Row labels indicate the type of emission data used (stack 
or literature) and the sample selection criterion (≥MDC, 50% and 80% IRE and/ 
or CNL influence).  

Data sets compared Relative improvement [%] 

Stack 50% vs. Stack ≥ MDC 29 [14, 36] 
Literature 50% vs. Literature ≥ MDC 20 [14, 24] 
Stack 50% vs. Literature 50% 10 [0.2, 14] 
Stack 80% vs. Stack ≥ MDC 27 [22, 38] 
Literature 80% vs. Literature ≥ MDC 20 [11, 34] 
Stack 80% vs. Literature 80% 9 [0.5, 13]  

Table 8 
Comparison of the effect of using daily stack emissions versus a disaggregated annual literature emission estimate on selected samples at SEX63. Columns from left to 
right with all activity concentrations in mBq/m3 are: Collection start yyyymmddhh [UTC], observed value, IRE contributions to the sample based on daily stack 
emission data, IRE contributions to the sample based on disaggregated literature emission data, favored IRE emission estimate (stack “S” or literature “L”) based on just 
considering IRE’s contributions, NPPs’+ NRRs’+ other radiopharmaceutical facilities’ contributions to the sample (including CNL for sample with collection start on 
2014100300), favored IRE emission estimate (stack “S” or literature “L”) based on considering all emitters’ contributions, total modeled sample value including IRE 
daily stack emission data and total modeled sample value including IRE disaggregated literature emission data.  

Coll. start Obs. IRE stack IRE lit. Fav. emiss. est. NPPs’+NRRs’+ other fac. Fav. emiss. est. Sum stack Sum lit. 

2014070700 1.71 0.16 0.09 S? 0.11 S 0.27 0.20 
2014072700 0.60 0.05 0.08 L? 0.54 S 0.60 0.62 
2014090300 0.41 0.12 0.41 S? 0.29 S 0.42 0.70 
2014100300 1.01 0.30 0.34 L? 1.52 S 1.82 1.86 
2014101300 0.72 0.19 0.48 L? 0.15 L 0.33 0.62 
2014102400 1.36 0.02 0.03 L? 1.02 L 1.04 1.05  
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Missing additional emitters or emissions are evident. Even more, NPPs’, 
NRRs’ and other radiopharmaceutical facilities’ summed contributions 
are in 2/3 of the cases and up to two orders of magnitude larger than IRE 
stack emission based contributions. Thus, IRE is not the driving force for 
these samples. This is in agreement with the upper panel of Fig. 1. 

For CNL and USX75 the picture is quite different although again in 2/ 
3 of the cases stack data outperform literature emission data (compare 
second and last two columns of Table 9). Deviations in the overall 
modeled values resulting from employing the two different emission 
data sets are no longer minor reaching for four samples at least a factor 
of two. There is even one sample (with collection start 2014110216) 
with a factor of 20. For 2/3 of the selected cases the CNL stack emission 
based contributions alone do not explain the signal although CNL was by 
far the dominating emitter in the North American domain in 2014. For 
the sake of completeness it should be noted that Xe-133m is not present 
in the simulation but respective stack data is also not available for CNL. 
If Xe-133m was released as a substantial fraction of the Xe-133 (as it 

might be from a MIPF) not accounting for Xe-133m and related parent- 
daughter decay might result in underpredicting Xe-133. However, the 
underprediction may as well be an effect of errors in the simulation of 
atmospheric transport. NPPs, NRRs and other radiopharmaceutical fa
cilities’ summed contributions are always and up to one order of 
magnitude smaller than CNL stack emission based contributions. Thus, 
CNL is indeed the driving force for these samples. The sample with 
collection start 2014110216 on one side impressively demonstrates the 
added value stack data can have for individual samples. On the other 
side an ATM error becomes evident for this sample as well and - to an 
even larger extent - for the sample with collection start 2014100116. If 
simulations based on just including very well known stack emission data 
already exceed the observed value these simulations cannot be accurate. 

Table 9 
Same as Table 8 but for CNL and USX75.  

Coll. start Obs. CNL stack CNL lit. Fav. emiss. est. NPPs’+NRRs’+ other fac. Fav. emiss. est. Sum stack Sum lit. 

2014062016 5.63 4.82 3.57 S? 0.13 S 4.95 3.71 
2014080216 18.51 3.92 1.07 S? 0.09 S 4.01 1.16 
2014082016 0.80 0.17 0.23 L? 0.10 L 0.27 0.33 
2014100116 4.80 6.85 2.61 L! 0.67 L! 7.52 3.28 
2014101416 0.95 0.38 0.15 S? 0.05 S 0.43 0.20 
2014110216 0.53 0.88 20.70 S! 0.36 S! 1.24 21.06  

Fig. 5. IRE (upper panel) and CNL (lower panel) daily stack emission profiles together with the mean daily values as well as the disaggregated annual literature 
estimates. Filled, colored circles along the profiles indicate emission chunks releated to specific samples observed at SEX63 and USX75 as listed in Tables 8 and 9. 
Different colors are used for different samples. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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3.2. Evaluating the added value of employing a multi-input multi-model 
ensemble 

The analysis of the rank histograms (Fig. 6) shows deviations from 
flatness and reveals skewed ensembles. Solazzo and Galmarini (2015) 
discussed the relationship between flatness of the ranked histogram and 
redundancy. The relatively high population of bins on the far right of the 
histograms (USX75, SEX73) is an indication of the tendency to under
predict observations and is in agreement with results from subsection 
3.1.3. Missing emissions and/or emitters at SEX63 and USX75 are very 
likely. 

According to subsection 2.6.2, the data set has been reduced for 
computational reasons because one of the listed procedures is based on 
the combination of all results configurations toward the minimization or 
maximization of the statistical parameters RMSE and R. An ensemble of 
26–28 members implies an unmanageable number of combinations (on 

the order of 228) of which not all are necessary. Many of the results are 
obtained from versions of the same underlying model (especially AWE, 
BOKU, CMC, KAERI, NOAA-ARL) which combinations would likely be 
“variations on the theme” of the parent model. In order to verify this 
hypothesis, the correlation matrix of all model results for the full 
ensemble has been calculated and is displayed in Fig. 7. A cut off value is 
introduced at R = 0.95 thus excluding all models that correlate above 
this R value and only one representative of any correlation group is 
retained. E.g., for SEX63 KAERI4,8 are retained as representatives of the 
highly correlated KAERI1,2,3,4 and KAERI5,6,7,8. The obvious redundancy 
provided by the correlation matrix reduced the ensembles as presented 
in Table A.9. Starting from the reduced ensembles the values for the 
maximum, average and minimum RMSE where calculated for all 
possible combinations of members. Fig. 8 shows the results. It clearly 
appears that at all stations the ensembles are behaving very regularly 
regardless of the number of models that compose them. 

Fig. 6. Rank (or Talagrand) histograms for all four involved IMS stations and the period June to November 2014 including all samples equal to or above the MDC.  
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Table 10 provides the condensed results of the performance of the 
reduced ensemble, the ensemble that minimizes the RMSE/maximizes 
the R and the performance of the weighted ensemble; in addition to that 
also the number of effective models is obtained. Several are the con
siderations that can be deduced from these results. The small effective 
number of models points toward a high level of redundancy in the 
original ensemble. In fact out of 16–21 models constituting the reduced 
ensembles at the four stations averagely 3.5 models are sufficient to 
reflect the actual diversity of the ensemble. The rest of the models are 

adding no element of independent information that could contribute to 
the improvement of the ensemble result. This can be attributed to two 
major causes: (1) Models are conceptually and structurally not too 
different from one another; (2) in spite of the different approaches for 
the specific case analysed many tend to agree in the prediction. Ac
cording to Table 10 the general lack of diversity is also apparent from 
the comparison of the RMSE of the reduced ensemble and the best 
performing grouping. The differences are present but not particularly 
striking especially for two (SEX63 & USX75) out of four stations. This 

Fig. 7. Correlation matrix calculated for all model results available at the four locations for the period June to November 2014 including all samples equal to or 
above the MDC. The correlation of results is indicated by the color and the size of the symbol. The larger the symbol the higher the correlation. All models showing a 
correlation larger than or equal to 0.95 are indicated with a cross through the symbol. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 8. Min., max. and average RMSE calculated for all combinations of models. The x-axis represents the number of models constituting the ensemble. For example, 
a value of 3 on the x-axis indicates that the min., max. and average values of RMSE are obtained based on all possible combinations of the available model results in 
groups of three. The dot laying on the minimum RMSE curve indicates the absolute minimum value obtained and the corresponding ensemble size that produces it. 

Table 10 
Summary table for the ensemble analysis. N: full ensemble size, Nr, R>0.95: reduced ensemble size following the correlation analysis, NRMSEmin: number of models for 
which RMSE is minimized, ACimp: improved accuracy with respect to the reduced ensemble and according to the RMSE, Neff: effective ensemble size, RMSEmin: 
minimum RMSE obtained by optimal combination of the members of the reduced ensemble, RMSEr: RMSE of the reduced (i.e., after correlation analysis) ensemble, 
Rmax: maximum Pearson Correlation Coefficient obtained by optimal combination of the members of the reduced ensemble, Rr: Pearson Correlation Coefficient of the 
reduced ensemble, RMSEw: RMSE of the weighted-diversity ensemble (based on dm), Rw: Pearson Correlation Coefficient of the weighted diversity ensemble (based on 
dm). For an explanation of the weighting procedure see subsection 2.6.2.   

N Nr, R>0.95 NRMSEmin ACimp [%] Neff RMSEmin RMSEr Rmax Rr RMSEw Rw 

CAX17 27 17 2 15 3.9 3.5 4.1 0.74 0.63 3.7 0.72 
DEX33 28 21 2 20 3.5 0.95 1.2 0.74 0.53 1.1 0.71 
SEX63 26 17 3 3 2.8 2.07 2.14 0.27 0.22 2.07 0.24 
USX75 26 16 6 8 3.7 8.6 9.3 0.78 0.68 8.9 0.67  

Fig. 9. Dendrograms calculated for all four sampling locations. See text for details.  
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indicates that the model results do not contain a sufficient level of di
versity to produce large improvements even when reducing the 
ensemble size to enhance diversity. The more relevant improvement for 
DEX33 does not come as a surprise due to the challenging orography of 
this site and model outputs sampled partly at considerably different 
output layers. The fact that the optimum ensemble configuration com
prises two runs sampling an elevated model output layer above ground 
level underpins the importance of accounting for poorly resolved model 
orography. The apparent discrepancy between the number of members 
of the RMSE-minimizing ensemble and the effective number of models 
simply depends on the nature of the two analyses. In one case all possible 
combinations of possible groupings of models have been used thus 
pinpointing the grouping that produces the minimum RMSE, in the 
second case a statistical analysis of how the model errors are distributed 
and represent the degrees of freedom with which all results are repre
sented is made. 

Having identified the presence of scarce levels of differentiation 
among the models it is important to determine whether some grouping 
occurs within the ensembles that would allow one to identify macro
scopic clusters of model behavior. By transforming the model correla
tions into the distance dm, a dendrogram can be produced as presented in 
Fig. 9. This time again the full original ensemble has been considered. 

Let us analyse station CAX17 as an example. From the dendogram the 
presence of three major groupings appears clearly. The KAERI family 
cluster constitutes the first one and a central group is made up of four 
small sub-clusters: one made up of NOAA-ARL runs that also group with 
ZAMG, one made up of BOKU and VINATOM, one made up of the 
CTBTO-2 family, and another one of the CMC family. Finally, a large 
cluster in red is made up of the largest variety of participating organi
zations. Such diverse clusters of models from different organizations are 
normally very interesting to analyse since behind the names may lay a 
clear diversity that is beneficial to ensemble treatments. As shown 
earlier, however, the diversity in organizations does not translate in 
diversity in the model results and therefore a detail scrutiny of the model 
workings may be required before asserting a truly different model 
behavior. Similar considerations can be drawn from the other 
dendrograms. 

Models are all numerical representations of the physical processes 
related to ATM. If we would know exactly how to represent mathe
matically those processes there would not be any need for multi-model 
ensembles. Any numerical representation of the analytical description 
would produce almost identical results. In the absence of analytical 
models different modeling approaches to the representation of the same 
physical phenomena exist and it is therefore a good reason to opt for a 
statistical combination of model results. Combing fully independent 
contributions would yield the best result, by far better than any indi
vidual model result. Unfortunately model results are not independent 
and therefore one has to make sure that the contributions to the 
ensemble are original contributions. As was widely demonstrated 
models belong to genealogies (Knutti et al., 2013), they can be the 
evolutions of common ancestors (be it full models or sets of modules) 
which may produce a similarity in the result that is more connected to 
the similarity of the tools used than to an agreement in determining the 
same prediction. The analysis presented aims specifically at avoiding the 
presence of redundant results in the ensemble and extracting only the 
information that is contributing to an effective improvement of the 
ensemble result. 

The selection of the models that originally contribute to the ensemble 
can be performed only in the presence of experimental evidence. One 
aspect that is very important to consider is that the behavior of models 
can change from one case to another. There are situations in which a 
model can produce results that are replicating other models, and other 
cases in which it may contribute independently to the final result. One 
should always consult large pools of models results in order to increase 
the likelihood of extracting meaningful ones. Training an ensemble 
against experimental evidence is the best way to assess whether some 

models behave systematically like others and therefore should be 
weighted less or even skipped in an ensemble. In the absence of a such 
training the combination of model results can only be managed statis
tically therefore opting for the mean or the median results. However, 
this approach is accompanied by the obvious drawback of diluting an 
ensemble of model results with those model results with few outliers and 
thus of discarding relevant outliers. 

In a recent study the use of Ensemble Prediction System (EPS) based 
multi-input atmospheric transport ensembles was inspected by Maurer 
et al. (2021) and even recommended to the CTBTO by the latter authors. 
Such an approach should probably be favored for the purpose of radi
oxenon ensemble modeling in case computational power is available. 
Any redundancy can be precluded a priori and the approach seems also 
easier and better controllable on an organizational level (collection of 
runs in the proper format in due time) in case of a potential violation of 
the CTBT. 

4. Conclusions 

After performing multi-model exercises in 2015 and 2016 an even 
more comprehensive Xe-133 atmospheric transport modeling challenge 
was organized in 2019. Previous challenges suffered from limitations in 
terms of emission inventories, simulation period and number of above 
MDC samples involved, all which could be substantially improved for 
the current challenge. 

Already from Fig. 1 it becomes clear at first glance that knowing 
exact IRE (and CNL) emissions is clearly not enough for accurately 
predicting samples at DEX33 and SEX63. Although the situation looks 
different for CAX17 and USX75 the impression is elusive because the 
analysis just covers known emitters and known emission quantities. 
From the rank histogram for USX75 (Fig. 6) missing emissions and/or 
emitters have to be anticipated too. The benefit of knowing the actual 
high-quality IRE and CNL emission profiles is in general evidently easily 
offset by poorly characterized or even unknown other emitters as well as 
atmospheric transport errors and long IMS sampling times (12–24 h). 
The detailed findings of this paper can be summarized as follows:  

● To demonstrate an average moderate added value of stack emissions 
from IRE and/or CNL compared to literature emissions for ATM and 
the four IMS stations investigated, the selected samples must be 
partly or predominantly influenced by these emitters. However, 
there can be considerable benefit from these stack data for individual 
samples.  

● It is interesting to note that the mere selection of samples partly (at 
least to 50%) or predominantly (at least to 80%) influenced by IRE 
and/or CNL pushes the scores up most. The relative increase in scores 
on average adds up to ca. 20% when switching from all above MDC 
samples to those with 50% or 80% IRE and/or CNL influence using 
literature emissions compared to ca. 10% when additionally 
switching from literature to stack emissions for 50% or 80% influ
ence samples. This demonstrates that 1) for the four IMS stations 
considered knowing a large emitter and its location as well as 2) a 
proper average emission rate per day is more important than 
knowing the exact emission profile – at least as long as remaining 
relevant emitters are not properly characterized. Implicitly sup
pressing samples with overprediction >50% or 20% in the sample 
selection process (via an absolute difference metric) can further 
enhance the scores which demonstrates the effects of the transport 
error on scores.  

● Simulating the radioxenon background at CAX17 without selecting 
samples according to CNL influence nevertheless seems to be 
promising since CAX17 is a remote station with (at the time of 2014) 
dominating CNL influence. The latter feature is also reflected by the 
largest fractions of samples retained by the different sample selection 
processes applied and matches findings for CAX16 (Yellowknife, 
Canada) from Saey et al. (2007) in the context of DPRK’s nuclear test 
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in 2006. CAX17 scores are highest for all metrics investigated and no 
sample selection applied. There is, however, no significant difference 
whether stack emissions or literature emissions are employed.  

● It seems thus to be very important to gain more knowledge about non 
IRE- and CNL-related emissions. The related sample contributions 
may be small individually (but can also be large, see MIPF NIIAR or 
Karpov institute for SEX63), but in any case their sum – depending on 
the predominant synoptic situation (e.g., November 2014 for DEX33) 
and the magnitude of the major emitter – can be a decisive factor in 
accurately predicting the radioxenon background at IMS stations. 

The Third ATM-Challenge presented here is in addition a practical 
application of what was described by Galmarini et al. (2004). Therein 
the possible combinations of meteorological input, emission conditions 
and dispersions models with the scope of creating an ensemble of 
dispersion predictions was presented. The Third ATM-Challenge repre
sents the ultimate configuration hypothesized by Galmarini et al. 
(2004). It includes multiple meteorological input fields driving a com
munity of dispersion models with the scope of creating the largest 
possible diversity in dispersion fields starting from all plausible fields 
and models. However, the current analysis reflects that:  

● The existent, full ensemble is highly redundant. An ensemble based 
on a few arbitrary submissions after a quick correlation analysis to 
discard members with very high correlation is good enough to model 
the Xe-133 background. The effective ensemble size is below five. 
This finding is in agreement with findings from the First and Second 
ATM-Challenge. The characteristic is very likely related to the fact 
that radioxenons - treated as tracers with just some decay - are spe
cies which are modeled rather uniformly by all models. If other at
mospheric processes, e.g., wet scavenging would need to be included 
it could lead to a larger variability between models. Further, mete
orological input consists of analyses (in most cases concatenated 
with short-term forecasts) thus reducing forecast uncertainty. 
Finally, there are dominating transport models (FLEXPART & HYS
PLIT) in combination with dominant meteorological drivers 
(ECMWF-IFS, NCEP-GFS).  

● The study shows that an optimized ensemble at each station has 
slightly higher skill compared to the reduced ensemble after corre
lation analysis. But the improvement (max. of 20% in RMSE for 
DEX33 but only 3% for SEX63) in skill is likely being too small for 
being exploited, especially for an independent period.  

● Assembling a multitude of dispersion calculations is a necessary but 
insufficient condition toward obtaining an optimal ensemble. Po
tential pitfalls loom behind such a construction and the real diversity 
of the ensemble has to be proven. Unfortunately model results are 
often not independent. An EPS-based ensemble may be a better 
alternative compared to the ensemble gathered in the frame of the 
Third ATM-Challenge. 
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Appendix 

A.1. Individual participants’ results 

A minor aspect of the Third ATM-Challenge was to do another model inter-comparison. Although of general interest for the participating orga
nizations the added value of such an inter-comparison from a practical point of view is limited for CTBT verification, civil radioxenon background 
modeling respectively, since modifying (possibly multi-purpose) modeling chains based on single case studies with different settings is hardly justified. 
The purpose of involving runs from many different participants in international exercises has since the First ATM-Challenge to a much larger degree 
been focused on building optimized ensembles or definitely answering questions regarding the requirements for emission data (e.g., temporal res
olution needed or emission accuracy). 

As demonstrated in all three ATM-Challenges individual model performance, model ranking respectively, varies case study by case study (despite 
employing the very same rank metric for the Third and Second ATM-Challenge), among target IMS stations for the very same case study (see Tables A.1 
and A.2, Tables A.3 and A.4, Tables A.5 and A.6 and Tables A.7 and A.8) and even between different time frames for a specific IMS station for the very 
same case study as shown also below. Further, any overall metrics of the three ATM-Challenges should only be compared restrainedly. To some degree 
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participants, but above all model set-ups (e.g., largely uniform versus non-uniform output grids) and likely model versions are different. Seasonal 
coverages, completeness of emission inventories, partly the considered hemispheres and IMS stations as well as the number of samples above the MDC 
(very low for the Second ATM-Challenge) are different too. 

If at all one can compare the results from the First ATM-Challenge (DEX33 was the only IMS station involved) with the results for DEX33 of the 
present study. As stated in the caption of Table 3 in Eslinger et al. (2016) the average metrics in the last line were calculated based on ensemble 
predictions made up of all submissions. Thus, the same approach was taken in this study for a comparison. Whereas scores in Eslinger et al. (2016) are 
valid for the period November, 10th, to December 10th, 2013 and rely on 26 members, the current statistics are based on the time frame July, 8th, to 
September 30th, 2014 and rely on 31 members. The values for correlation are similar (0.69 in Eslinger et al. (2016) versus 0.61 in the present study), 
those for the fractional biases are similar according to the absolute value, but different according to the sign (0.27 for Eslinger et al. (2016) versus 
− 0.12 in the present study). The F5 is lower for Eslinger et al. (2016) (61%) than for the present study (85%) and the KS is considerably higher for 
Eslinger et al. (2016) (42%) than for the present study (8%). Computing the rank following the definition in Eslinger et al. (2016) (see section 3 
therein) yields 3.09 versus 2.53 in the former study. However, modeling the atmospheric transport to DEX33, located on a mountain next to the Rhine 
valley, will be more challenging in winter than in summer and the runs in Eslinger et al. (2016) with one exemption did not include any other emitters 
than just IRE. 

Table A.1, Table A.3, Table A.5 and Table A.7 show the results based on stack emission data per individual run and averaged over all runs of a 
specific participant for IMS stations CAX17, DEX33, SEX63 and USX75. For strict comparability reasons the tables only cover the months July to 
September which were modeled without exception by all participants. Apart from RankKS, the Seibert Score SS, the Kolmogorov-Smirnov parameter 
KS and the (normalized) bias corrected root mean square error BCRMSE (BCNMSE) as defined in subsection 2.6.1, as well as the ratio of observed and 
modeled standard deviations replacing the cross correlation coefficient, scores (R, FB, F5, ACC, NAAD and Rank) are indentical to those employed and 
defined in Maurer et al. (2018). Runs are sorted according to metric Rank as for the Second ATM-Challenge. Highest overall performance (see last but 
third line in the tables) is reached for CAX17 and Rank, RankKS, respectively with median values of 2.62, 3.49, respectively, and for DEX33 and SS with 
a value of 0.58. Rank values range from 2.31 (USX75) to 2.62 (CAX17, 13% difference between the best and the worst Rank value), RankKS values from 
3.02 (USX75) to 3.49 (CAX17, 16% difference between the best and the worst RankKS value) and SS values from 0.40 (SEX63) to 0.58 (DEX33, 45% 
difference between the best and the worst SS value). Comparing the full (June–November, tables not shown) with the reduced (July-Septmeber) 
evaluation period one can find some differences per IMS station although averaged over all four stations results are similar (see Table 6). For CAX17 
median [minimum, maximum] add up to 2.63 [1.22, 3.16] for Rank, to 3.48 [1.75, 4.07] for RankKS and 0.63 [0.12, 0.86] for SS with two of the three 
best performing runs being identical for both evaluation periods. For DEX33 analogous figures are 2.42 [1.70, 3.04], 3.15 [2.39, 3.92] and 0.51 [0.17, 
0.81] again with two of the three best performing runs being identical for both evaluation periods. For SEX63 we find 2.21 [0.75, 2.58], 2.96 [1.14, 
3.49] and 0.32 [0.03, 0.76] and one of the three best performing runs being identical for both evaluation periods. And, finally, USX75 yields 2.34 
[1.06, 2.86], 3.09 [1.58, 3.69] and 0.39 [0.09, 0.75] again with two of the three best performing runs being identical for both evaluation periods. Both 
evaluation periods reflect better predictability for CAX17 and DEX33 compared to SEX63 and USX75. 

KAERI runs 2 to 4 and 6 to 8 offer the unique opportunity to compare the effect of different output resolutions (0.5◦ × 0.5◦, 0.35◦ × 0.23◦ and 0.1◦

× 0.1◦) under otherwise unchanged settings. Under KAERI standard settings (runs 2 to 4) for turbulent diffusion constants, i.e., kh = 2.5 × 104 m2/s 
and kv = 1.0 m2/s, there is virtually no difference between the three output resolutions. If at all, noteworthy differences are confined to the exper
imental setting (runs 6 to 8) for turbulent diffusion constants, i.e., kh = 50 m2/s and kv = 0.1 m2/s. Largest discrepancies can be found for DEX33 with 
the 0.5◦ × 0.5◦ outperforming the 0.1◦ × 0.1◦ run. However, a coarse resolution run outperforming a high resolution run does not come as a surprise at 
IMS station DEX33 and was discussed in section 4. Conclusions of Maurer et al. (2018) in detail. 

Finally, Table A.2, Table A.4, Table A.6 and Table A.8 show analogous results compared to Table A.1, Table A.3, Table A.5 and Table A.7 with the 
only exception that emitters apart from IRE and CNL were omitted thus avoiding any bias in the analysis possibly introduced by adding ZAMG’s results 
for remaining emitters to the IRE and CNL only simulations of ARPANSA, IRSN, JAEA-1 and JAEA-2. In fact Table A.2, Table A.4, Table A.6 and 
Table A.8 should be used when the only aim is to compare run performances relatively to each other. In most cases ranking is improving for those four 
participants if ZAMG’s results are not added. Ranking differences for ARPANSA (averaged in case of DEX33 over two individual runs), IRSN, JAEA-1 
and JAEA-2 reflect the different impact of IRE and/or CNL on the four IMS stations and the difference between emitters IRE and CNL themselves with 
regard to release amounts. The maximum change in ranking adds up to two positions for CAX17 (compare Tables A.1 and A.2), followed by five 
positions for USX75 (compare Tables A.7 and A.8), six for DEX33 (compare Tables A.3 and A.4) and nine for SEX63 (compare Tables A.7 and A.8). 
Findings of section 3.1.3 get corroborated: Not a lot run performance can be gained when adding remaining emitters for IMS stations CAX17 and 
USX75 with dominant CNL influence. The radioxenon background at CAX17 can especially be well simulated without taking into consideration any 
other emitters. 

Ultimately, it is important to note that ranking runs with respect to one metric does not necessarily do justice to the submissions. However, the 
highest Ranks (differences between Rank and RankKS are minor) tend to come with high SSs.  

Table A.1 
Statistics for CAX17 and time frame July, 8th, to September 30th, using stack emissions for IRE & CNL and including all remaining emitters. Results are shown per 
organization for individual run IDs (organization IDs plus subcripts) and over all run-IDs per participating organization ordered by rank. Bottom lines show metrics 
over all organizations after averaging over all run-IDs per organization. Number of valid sample pairs involved including observed samples below MDC: 82.  

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

AWE2 0.62 − 1.67 13 4.99 39.21 47 51 93 10.11 1.20 1.73 0.03 
AWE 0.62 − 1.67 13 4.99 39.12 47 51 93 10.10 1.20 1.73 0.03 
AWE1 0.62 − 1.67 13 4.99 39.04 47 51 93 10.09 1.20 1.73 0.03 
LLNL 0.46 − 0.97 68 4.74 9.10 29 82 72 2.65 2.22 2.93 0.21 
JAEA-2 0.19 0.15 56 6.17 4.64 10 71 115 1.22 2.23 3.13 0.70 
FOI 0.46 − 0.38 67 4.84 4.89 20 82 69 1.50 2.50 3.30 0.51 
CTBTO-1 0.54 − 0.59 75 4.46 5.16 21 79 63 2.14 2.55 3.34 0.34 
KAERI4 0.41 0.40 73 6.22 3.65 15 85 125 0.87 2.55 3.40 0.54 
KAERI2 0.42 0.42 75 6.17 3.51 16 85 126 0.87 2.57 3.41 0.53 

(continued on next page) 
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Table A.1 (continued ) 

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

BOKU1 0.28 − 0.23 78 6.33 7.11 11 83 83 1.01 2.57 3.46 0.65 
KAERI3 0.41 0.41 76 6.18 3.58 15 85 125 0.87 2.58 3.43 0.54 
VINATOM 0.30 − 0.17 75 5.95 5.94 11 83 86 1.12 2.59 3.48 0.71 
JAEA-1 0.54 0.10 62 4.77 2.90 10 76 85 1.17 2.62 3.52 0.83 
BOKU 0.48 − 0.46 75 5.18 5.94 15 82 73 1.57 2.62 3.48 0.49 
PNNL 0.73 − 0.70 65 3.93 4.54 22 79 58 2.26 2.63 3.41 0.32 
KAERI6 0.52 0.45 73 6.02 3.24 16 87 117 0.79 2.64 3.48 0.52 
KAERI 0.49 0.38 74 5.82 3.25 15 86 114 0.88 2.65 3.50 0.57 
KAERI8 0.52 0.36 71 5.73 3.22 15 85 109 0.84 2.66 3.51 0.58 
BOKU2 0.69 − 0.70 73 4.03 4.76 18 82 62 2.13 2.67 3.49 0.33 
KAERI5 0.55 0.39 71 5.54 2.94 14 87 105 0.85 2.68 3.54 0.58 
KAERI7 0.52 0.40 75 5.82 3.20 16 87 112 0.82 2.69 3.53 0.56 
ARPANSA 0.67 − 0.58 73 4.00 4.09 19 80 64 1.92 2.70 3.51 0.40 
ZAMG 0.64 − 0.42 80 4.09 3.63 20 79 60 1.85 2.79 3.59 0.47 
NOAA-ARL1 0.71 0.05 61 3.88 2.03 33 72 77 1.93 2.81 3.48 0.78 
KAERI1 0.53 0.23 79 4.90 2.69 13 87 95 1.11 2.82 3.69 0.70 
CMC3 0.57 0.15 83 5.26 3.37 10 88 76 0.88 2.96 3.86 0.80 
CMC2 0.56 − 0.15 84 4.55 3.42 9 88 62 1.28 2.96 3.87 0.77 
NOAA-ARL3 0.69 − 0.28 77 3.86 2.81 13 85 58 1.56 2.96 3.83 0.63 
NOAA-ARL 0.71 − 0.12 72 3.77 2.29 19 80 64 1.57 2.96 3.77 0.75 
CMC 0.59 0.03 84 4.80 3.18 9 89 69 1.05 3.01 3.92 0.81 
IRSN 0.64 − 0.10 81 4.10 2.63 8 88 64 1.36 3.05 3.97 0.83 
CMC1 0.63 0.09 86 4.59 2.74 8 90 69 1.00 3.11 4.03 0.87 
NOAA-ARL2 0.74 − 0.11 77 3.58 2.03 11 84 57 1.23 3.11 4.00 0.86 
CTBTO-21 0.91 − 0.16 77 2.26 0.85 11 84 46 1.17 3.35 4.24 0.86 
CTBTO-2 0.90 − 0.14 77 2.28 0.85 11 85 46 1.16 3.36 4.25 0.88 
CTBTO-22 0.90 − 0.13 77 2.30 0.85 11 85 47 1.15 3.37 4.26 0.90 
Average over all organizations 0.56 ¡0.35 69 4.62 6.38 18 80 75 2.09 2.60 3.43 0.55 
Median over all organizations 0.57 ¡0.28 74 4.75 4.32 17 81 69 1.53 2.62 3.49 0.54 
Maximum over all 

organizations 
0.90 0.38 84 6.17 39.12 47 89 115 10.10 3.36 4.25 0.88 

Minimum over all 
organizations 

0.19 ¡1.67 13 2.28 0.85 8 51 46 0.88 1.20 1.73 0.03   

Table A.2 
Same as Table A.1, but with IRE and CNL stack emissions only.  

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

AWE2 0.62 − 1.67 13 4.99 39.73 48 51 93 10.18 1.20 1.72 0.03 
AWE 0.62 − 1.67 13 4.99 39.73 48 51 93 10.18 1.20 1.72 0.03 
AWE1 0.62 − 1.67 13 4.99 39.73 48 51 93 10.18 1.20 1.72 0.03 
LLNL 0.45 − 0.97 66 4.74 9.22 30 82 72 2.67 2.20 2.90 0.21 
JAEA-2 0.19 0.14 56 6.17 4.66 10 71 115 1.22 2.23 3.13 0.70 
FOI 0.46 − 0.39 67 4.84 4.94 20 82 69 1.51 2.50 3.30 0.51 
CTBTO-1 0.54 − 0.59 75 4.47 5.22 21 79 64 2.15 2.54 3.33 0.34 
KAERI4 0.41 0.39 73 6.21 3.67 15 85 124 0.88 2.55 3.40 0.54 
BOKU1 0.28 − 0.24 78 6.33 7.19 13 83 84 1.01 2.57 3.44 0.64 
VINATOM 0.30 − 0.18 75 5.95 6.02 13 83 86 1.13 2.58 3.45 0.70 
KAERI2 0.42 0.41 76 6.15 3.53 16 87 125 0.87 2.59 3.43 0.53 
PNNL 0.73 − 0.71 65 3.94 4.61 22 78 58 2.28 2.61 3.39 0.32 
KAERI3 0.41 0.40 77 6.16 3.59 15 87 124 0.88 2.61 3.46 0.54 
BOKU 0.48 − 0.47 75 5.18 5.98 16 82 73 1.57 2.62 3.46 0.49 
JAEA-1 0.54 0.10 62 4.77 2.92 10 76 85 1.17 2.62 3.52 0.83 
KAERI6 0.52 0.44 73 6.00 3.26 16 87 116 0.79 2.64 3.48 0.53 
KAERI 0.49 0.37 74 5.81 3.27 15 86 113 0.88 2.66 3.51 0.57 
KAERI8 0.52 0.36 71 5.72 3.24 14 85 108 0.85 2.66 3.52 0.59 
BOKU2 0.69 − 0.70 73 4.03 4.77 18 82 62 2.13 2.67 3.49 0.33 
ARPANSA 0.67 − 0.58 71 4.00 4.14 19 80 65 1.93 2.68 3.49 0.39 
KAERI5 0.55 0.38 71 5.53 2.96 14 87 104 0.85 2.69 3.55 0.58 
KAERI7 0.52 0.39 75 5.80 3.22 16 87 111 0.83 2.69 3.53 0.57 
ZAMG 0.64 − 0.43 80 4.09 3.66 20 79 60 1.86 2.79 3.59 0.46 
NOAA-ARL1 0.71 0.04 61 3.88 2.06 33 72 77 1.93 2.81 3.48 0.78 
KAERI1 0.53 0.22 79 4.89 2.71 13 87 94 1.12 2.82 3.69 0.71 
NOAA-ARL3 0.69 − 0.30 76 3.86 2.84 14 84 58 1.57 2.92 3.78 0.61 
NOAA-ARL 0.71 − 0.13 71 3.78 2.32 19 79 64 1.58 2.93 3.74 0.75 
CMC3 0.57 0.14 83 5.25 3.39 11 88 76 0.89 2.96 3.85 0.80 
CMC2 0.56 − 0.16 86 4.55 3.46 9 89 62 1.29 2.98 3.89 0.76 
CMC 0.58 0.02 84 4.80 3.20 9 89 69 1.06 3.01 3.91 0.81 
IRSN 0.64 − 0.10 79 4.10 2.65 8 87 64 1.36 3.01 3.93 0.83 
NOAA-ARL2 0.74 − 0.12 76 3.59 2.06 11 82 57 1.23 3.06 3.95 0.85 
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Table A.2 (continued ) 

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

CMC1 0.62 0.08 84 4.59 2.76 8 89 69 1.00 3.08 4.00 0.88 
CTBTO-22 0.90 − 0.16 75 2.29 0.87 12 84 47 1.16 3.33 4.21 0.86 
CTBTO-2 0.91 − 0.18 76 2.27 0.88 13 84 46 1.17 3.33 4.21 0.84 
CTBTO-21 0.91 − 0.20 77 2.25 0.88 13 84 46 1.18 3.33 4.20 0.82 
Average over all organizations 0.56 ¡0.36 68 4.62 6.46 18 79 75 2.11 2.59 3.41 0.55 
Median over all organizations 0.56 ¡0.29 73 4.75 4.38 17 81 69 1.54 2.62 3.48 0.54 
Maximum over all 

organizations 
0.91 0.37 84 6.17 39.73 48 89 115 10.18 3.33 4.21 0.84 

Minimum over all 
organizations 

0.19 ¡1.67 13 2.27 0.88 8 51 46 0.88 1.20 1.72 0.03   

Table A.3 
Statistics for DEX33 and time frame July, 8th, to September 30th, using stack emissions for IRE & CNL and including all remaining emitters. Results are shown per 
organization for individual run IDs (organization IDs plus subcripts) and over all run-IDs per participating organization ordered by rank. Bottom lines show metrics 
over all organizations after averaging over all run-IDs per organization. Number of valid sample pairs involved including observed samples below MDC: 79.  

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

JAEA-1 0.45 − 0.72 65 1.52 2.96 38 61 70 2.16 2.11 2.73 0.29 
FOI 0.26 0.21 56 2.96 4.31 26 63 133 0.59 2.16 2.90 0.59 
ARPANSA1 0.63 − 0.92 74 1.44 3.38 39 56 70 3.32 2.23 2.84 0.18 
AWE2 0.16 − 0.64 78 1.69 3.33 25 85 74 4.71 2.33 3.08 0.15 
ARPANSA 0.66 − 0.87 76 1.40 3.02 40 57 67 3.07 2.33 2.93 0.21 
AWE 0.09 − 0.53 76 1.73 3.09 20 84 77 4.05 2.34 3.15 0.20 
AWE1 0.02 − 0.41 73 1.77 2.86 14 82 80 3.39 2.35 3.21 0.26 
CTBTO-21 0.29 0.76 85 5.79 9.13 19 81 164 0.28 2.37 3.18 0.16 
VINATOM 0.45 0.58 76 4.44 6.54 20 75 143 0.35 2.42 3.22 0.25 
ARPANSA2 0.69 − 0.82 78 1.36 2.66 41 58 64 2.82 2.43 3.02 0.23 
BOKU2 0.54 − 0.23 70 1.86 2.64 44 57 76 0.80 2.45 3.01 0.69 
ZAMG 0.45 − 0.38 78 1.64 2.39 32 71 70 1.24 2.50 3.18 0.55 
CTBTO-2 0.32 0.36 83 4.05 6.22 24 77 123 0.52 2.50 3.26 0.48 
BOKU 0.48 − 0.18 77 1.92 2.65 35 63 77 0.85 2.54 3.20 0.74 
PNNL 0.25 0.23 76 1.75 1.48 41 85 99 1.68 2.56 3.15 0.57 
CTBTO-1 0.35 − 0.14 79 1.70 1.99 22 73 83 1.47 2.57 3.35 0.71 
LLNL 0.22 − 0.06 77 1.75 1.96 19 78 88 1.82 2.58 3.39 0.70 
CTBTO-22 0.34 − 0.03 81 2.30 3.31 29 72 82 0.76 2.63 3.34 0.81 
BOKU1 0.41 − 0.13 85 1.97 2.66 25 68 77 0.89 2.64 3.39 0.78 
KAERI8 0.58 − 0.29 83 1.48 1.76 34 67 64 1.16 2.69 3.35 0.66 
IRSN 0.62 − 0.56 86 1.40 2.10 22 77 59 2.56 2.73 3.51 0.31 
NOAA-ARL2 0.51 − 0.20 78 1.47 1.59 13 81 67 1.85 2.75 3.62 0.62 
NOAA-ARL3 0.51 − 0.23 80 1.46 1.63 14 82 66 1.90 2.77 3.63 0.58 
CMC3 0.51 0.26 80 1.50 1.05 40 85 82 1.47 2.77 3.37 0.63 
KAERI7 0.60 − 0.27 87 1.45 1.66 32 71 59 1.12 2.80 3.48 0.68 
NOAA-ARL 0.52 − 0.12 81 1.46 1.48 23 83 69 2.05 2.82 3.59 0.63 
JAEA-2 0.60 − 0.22 86 1.40 1.47 23 71 62 1.27 2.82 3.59 0.71 
CMC 0.52 0.03 83 1.48 1.31 29 86 73 1.53 2.85 3.56 0.66 
CMC1 0.51 0.12 79 1.51 1.22 29 86 75 1.41 2.85 3.56 0.77 
CMC2 0.54 − 0.28 90 1.44 1.67 18 87 63 1.72 2.92 3.74 0.57 
NOAA-ARL1 0.53 0.06 84 1.46 1.21 41 85 74 2.40 2.94 3.53 0.68 
KAERI6 0.67 − 0.21 88 1.31 1.28 27 78 53 1.17 3.01 3.74 0.75 
KAERI 0.67 − 0.24 91 1.31 1.32 21 80 53 1.40 3.04 3.84 0.68 
KAERI5 0.65 − 0.12 94 1.40 1.35 18 82 57 1.04 3.12 3.94 0.85 
KAERI3 0.72 − 0.29 93 1.21 1.18 16 84 47 1.73 3.14 3.98 0.60 
KAERI4 0.72 − 0.29 93 1.21 1.18 15 84 48 1.73 3.14 3.99 0.59 
KAERI2 0.72 − 0.27 93 1.21 1.15 12 86 47 1.70 3.17 4.05 0.62 
KAERI1 0.72 − 0.18 94 1.18 1.01 10 90 47 1.53 3.27 4.17 0.74 
Average over all organizations 0.43 ¡0.16 78 1.99 2.77 27 74 84 1.66 2.55 3.28 0.52 
Median over all organizations 0.45 ¡0.16 78 1.67 2.24 24 76 75 1.50 2.55 3.24 0.58 
Maximum over all 

organizations 
0.67 0.58 91 4.44 6.54 41 86 143 4.05 3.04 3.84 0.74 

Minimum over all 
organizations 

0.09 ¡0.87 56 1.31 1.31 19 57 53 0.35 2.11 2.73 0.20   
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Table A.4 
Same as Table A.3, but with IRE and CNL stack emissions only.  

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

AWE1 0.34 − 1.66 9 1.63 17.02 77 24 93 5.41 0.61 0.84 0.06 
AWE 0.34 − 1.66 9 1.63 17.01 77 24 93 5.41 0.61 0.84 0.06 
AWE2 0.34 − 1.66 9 1.63 17.00 77 24 93 5.41 0.61 0.84 0.06 
LLNL 0.53 − 1.29 34 1.48 6.12 69 32 80 2.82 1.29 1.60 0.18 
ARPANSA1 0.62 − 1.32 30 1.47 6.38 59 43 80 3.86 1.45 1.86 0.12 
JAEA-1 0.41 − 1.07 39 1.56 4.82 57 44 80 2.25 1.46 1.89 0.23 
NOAA-ARL3 0.46 − 1.05 36 1.52 4.44 59 43 81 2.01 1.48 1.89 0.27 
NOAA-ARL2 0.45 − 0.96 36 1.52 4.01 58 46 81 1.96 1.54 1.96 0.29 
ARPANSA 0.65 − 1.28 33 1.44 5.70 57 44 78 3.56 1.56 1.99 0.14 
CTBTO-1 0.57 − 1.05 40 1.40 3.82 59 39 75 2.03 1.60 2.01 0.29 
PNNL 0.47 − 0.94 44 1.51 3.78 53 44 77 2.08 1.64 2.11 0.27 
ARPANSA2 0.69 − 1.24 36 1.40 5.01 55 46 77 3.26 1.67 2.12 0.16 
ZAMG 0.42 − 0.69 45 1.67 3.44 54 48 80 1.29 1.76 2.22 0.42 
NOAA-ARL 0.46 − 0.84 50 1.52 3.59 45 52 78 2.19 1.81 2.36 0.29 
KAERI8 0.53 − 0.72 49 1.51 2.91 56 41 74 1.27 1.81 2.25 0.44 
FOI 0.36 − 0.42 42 2.58 6.14 54 48 104 0.65 1.82 2.28 0.46 
BOKU1 0.39 − 0.49 49 1.96 3.84 47 48 83 0.92 1.88 2.41 0.49 
KAERI7 0.56 − 0.68 53 1.49 2.70 56 42 72 1.21 1.92 2.36 0.47 
CTBTO22 0.25 − 0.40 54 2.35 5.00 47 54 91 0.81 1.95 2.48 0.49 
BOKU 0.46 − 0.44 49 1.90 3.44 51 47 83 0.87 1.96 2.45 0.53 
CTBTO-2 0.26 0.12 63 4.09 7.82 41 59 125 0.55 2.03 2.62 0.34 
BOKU2 0.53 − 0.39 48 1.84 3.03 55 47 82 0.83 2.04 2.49 0.57 
KAERI6 0.64 − 0.64 56 1.33 2.06 54 43 65 1.27 2.08 2.54 0.49 
CTBTO21 0.26 0.63 72 5.82 10.64 35 65 159 0.28 2.11 2.76 0.19 
CMC3 0.52 − 0.59 62 1.47 2.41 47 54 73 1.58 2.13 2.66 0.42 
IRSN 0.58 − 0.87 70 1.44 3.19 48 56 68 2.75 2.16 2.68 0.22 
CMC2 0.48 − 0.66 70 1.50 2.70 45 57 74 1.83 2.17 2.72 0.36 
VINATOM 0.46 0.13 51 4.30 9.77 45 52 118 0.35 2.17 2.72 0.57 
CMC 0.50 − 0.60 67 1.50 2.50 45 57 73 1.63 2.18 2.73 0.41 
KAERI5 0.65 − 0.57 59 1.35 1.98 52 46 64 1.12 2.19 2.67 0.53 
KAERI 0.65 − 0.65 60 1.33 2.13 49 50 64 1.51 2.20 2.71 0.44 
CMC1 0.49 − 0.53 69 1.52 2.39 43 58 74 1.49 2.24 2.81 0.45 
JAEA-2 0.58 − 0.45 66 1.42 1.92 41 58 68 1.31 2.36 2.95 0.53 
KAERI3 0.69 − 0.68 66 1.26 1.94 43 56 61 1.87 2.36 2.93 0.38 
KAERI4 0.70 − 0.68 66 1.25 1.94 44 57 60 1.88 2.37 2.93 0.38 
KAERI2 0.69 − 0.67 68 1.26 1.90 43 57 60 1.85 2.39 2.96 0.39 
NOAA-ARL1 0.47 − 0.51 78 1.51 2.33 18 67 71 2.58 2.42 3.24 0.31 
KAERI1 0.71 − 0.60 68 1.21 1.64 44 57 57 1.64 2.45 3.01 0.45 
Average over all organizations 0.48 ¡0.75 48 1.92 5.32 53 47 84 1.95 1.79 2.26 0.34 
Median over all organizations 0.47 ¡0.76 47 1.51 3.80 52 48 79 1.83 1.81 2.32 0.31 
Maximum over all 

organizations 
0.65 0.13 70 4.30 17.01 77 59 125 5.41 2.36 2.95 0.57 

Minimum over all 
organizations 

0.26 ¡1.66 9 1.33 1.92 41 24 64 0.35 0.61 0.84 0.06   

Table A.5 
Statistics for SEX63 and time frame July, 8th, to September 30th, using stack emissions for IRE & CNL and including all remaining emitters. Results are shown per 
organization for individual run IDs (organization IDs plus subcripts) and over all run-IDs per participating organization ordered by rank. Bottom lines show metrics 
over all organizations after averaging over all run-IDs per organization. Number of valid sample pairs involved including observed samples below MDC: 168.  

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

AWE2 0.50 − 1.66 15 0.90 15.27 68 32 91 6.07 0.88 1.20 0.06 
AWE 0.52 − 1.64 16 0.89 14.20 68 32 91 6.00 0.93 1.25 0.06 
AWE1 0.54 − 1.62 17 0.89 13.13 67 32 90 5.93 0.98 1.31 0.06 
CTBTO-1 0.51 − 0.89 63 0.83 3.17 41 52 73 2.07 1.96 2.55 0.29 
LLNL 0.55 − 0.88 64 0.81 2.98 41 52 72 2.15 2.02 2.61 0.28 
FOI 0.64 − 0.89 62 0.76 2.66 40 57 67 2.18 2.16 2.76 0.29 
PNNL 0.45 − 0.52 64 0.97 2.83 30 60 73 1.10 2.18 2.88 0.49 
JAEA-1 0.38 − 0.40 65 0.97 2.48 25 60 80 1.29 2.20 2.95 0.52 
ZAMG 0.54 − 0.75 72 0.82 2.60 37 58 66 1.56 2.21 2.84 0.39 
ARPANSA 0.62 − 0.88 76 0.79 2.82 37 58 69 2.55 2.28 2.91 0.24 
VINATOM 0.44 − 0.51 75 0.88 2.31 23 68 72 1.68 2.37 3.14 0.42 
BOKU1 0.51 − 0.55 74 0.85 2.23 25 65 71 1.46 2.38 3.13 0.45 
BOKU 0.61 − 0.58 71 0.77 1.90 31 63 64 1.50 2.43 3.12 0.46 
BOKU2 0.71 − 0.62 68 0.69 1.57 37 61 58 1.53 2.48 3.11 0.46 
JAEA-2 0.50 − 0.46 80 0.86 2.08 20 68 65 1.46 2.50 3.30 0.49 
IRSN 0.61 − 0.62 82 0.77 2.00 24 71 61 1.97 2.59 3.35 0.37 
NOAA-ARL1 0.55 − 0.38 80 0.84 1.84 19 76 67 3.30 2.66 3.47 0.32 
CMC3 0.56 − 0.33 83 0.83 1.69 16 76 61 1.28 2.73 3.57 0.60 
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Table A.5 (continued ) 

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

CMC2 0.59 − 0.34 84 0.81 1.64 17 73 59 1.22 2.74 3.57 0.61 
NOAA-ARL 0.63 − 0.48 83 0.78 1.73 20 76 62 2.55 2.75 3.55 0.36 
CMC 0.57 − 0.33 84 0.82 1.66 16 75 60 1.25 2.75 3.59 0.62 
CMC1 0.57 − 0.31 84 0.83 1.65 16 77 60 1.24 2.78 3.62 0.63 
NOAA-ARL3 0.68 − 0.56 85 0.74 1.73 21 76 60 2.28 2.79 3.58 0.35 
NOAA-ARL2 0.67 − 0.50 85 0.74 1.62 19 76 59 2.06 2.80 3.61 0.40 
KAERI5 0.53 0.01 80 1.20 2.51 13 74 71 0.69 2.83 3.70 0.84 
KAERI7 0.53 − 0.00 79 1.18 2.43 14 75 70 0.71 2.83 3.69 0.84 
KAERI8 0.53 − 0.01 80 1.19 2.51 16 77 71 0.70 2.85 3.69 0.84 
KAERI6 0.54 − 0.02 81 1.12 2.27 12 76 68 0.75 2.85 3.73 0.85 
KAERI 0.53 − 0.01 83 1.06 2.02 13 80 67 0.84 2.90 3.78 0.86 
KAERI3 0.53 − 0.02 86 0.95 1.61 13 83 64 0.97 2.97 3.84 0.88 
KAERI4 0.53 − 0.02 86 0.95 1.61 12 83 64 0.97 2.97 3.85 0.88 
KAERI1 0.54 − 0.01 85 0.96 1.63 12 83 63 0.95 2.97 3.85 0.88 
KAERI2 0.54 − 0.02 86 0.94 1.57 11 84 63 0.99 2.98 3.87 0.88 
CTBTO-2 0.65 − 0.02 82 0.78 1.09 9 81 56 1.07 3.05 3.96 0.91 
Average over all organizations 0.55 ¡0.62 70 0.85 3.03 30 63 69 1.95 2.33 3.03 0.44 
Median over all organizations 0.55 ¡0.55 73 0.82 2.39 28 62 67 1.62 2.32 3.03 0.40 
Maximum over all 

organizations 
0.65 ¡0.01 84 1.06 14.20 68 81 91 6.00 3.05 3.96 0.91 

Minimum over all 
organizations 

0.38 ¡1.64 16 0.76 1.09 9 32 56 0.84 0.93 1.25 0.06   

Table A.6 
Same as Table A.5, but with IRE and CNL stack emissions only.  

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

AWE2 0.44 − 1.78 6 0.91 25.02 0 30 94 6.16 0.67 1.67 0.05 
AWE 0.44 − 1.78 6 0.91 25.02 0 30 94 6.16 0.67 1.67 0.05 
AWE1 0.44 − 1.78 6 0.91 25.02 0 30 94 6.16 0.67 1.67 0.05 
CTBTO-1 0.29 − 1.32 23 0.94 7.62 62 34 88 2.20 0.99 1.37 0.21 
BOKU2 0.37 − 1.34 22 0.91 7.32 64 36 86 1.89 1.05 1.41 0.26 
BOKU 0.31 − 1.21 24 0.96 6.66 59 37 89 1.73 1.11 1.52 0.28 
FOI 0.39 − 1.34 26 0.89 7.03 62 38 83 2.36 1.12 1.50 0.21 
ARPANSA 0.38 − 1.35 29 0.89 7.22 61 37 85 2.71 1.13 1.52 0.17 
LLNL 0.35 − 1.32 32 0.91 7.06 61 35 85 2.31 1.14 1.53 0.21 
CTBTO-21 0.38 − 1.27 27 0.90 6.40 60 38 82 1.97 1.16 1.56 0.25 
BOKU1 0.25 − 1.08 27 1.01 6.01 54 38 92 1.57 1.17 1.63 0.30 
ZAMG 0.38 − 1.17 29 0.92 5.77 60 37 81 1.58 1.22 1.62 0.32 
NOAA-ARL3 0.44 − 1.29 31 0.87 6.11 59 38 82 2.47 1.23 1.64 0.20 
VINATOM 0.19 − 1.05 34 1.01 5.76 51 40 90 1.84 1.26 1.75 0.25 
NOAA-ARL 0.35 − 1.16 39 0.90 5.44 51 40 81 2.75 1.35 1.84 0.19 
NOAA-ARL2 0.44 − 1.20 36 0.87 5.28 55 42 79 2.18 1.37 1.82 0.24 
JAEA-1 0.25 − 0.72 31 1.07 4.28 47 42 94 1.27 1.43 1.96 0.38 
NOAA-ARL1 0.16 − 1.01 49 0.96 4.91 38 42 83 3.60 1.44 2.06 0.12 
CMC3 0.39 − 0.91 40 0.96 4.33 50 42 81 1.32 1.52 2.02 0.38 
CMC 0.39 − 0.89 41 0.97 4.29 49 43 81 1.29 1.54 2.05 0.38 
CMC1 0.39 − 0.88 42 0.97 4.25 49 43 81 1.28 1.55 2.06 0.38 
CMC2 0.38 − 0.88 42 0.97 4.29 49 43 81 1.28 1.56 2.07 0.38 
JAEA-2 0.35 − 0.80 43 0.96 3.81 42 46 77 1.45 1.61 2.19 0.36 
PNNL 0.34 − 0.81 43 1.05 4.61 45 49 84 1.13 1.64 2.19 0.40 
IRSN 0.42 − 1.00 47 0.88 4.12 47 49 75 2.02 1.64 2.17 0.27 
KAERI5 0.31 − 0.58 43 1.32 5.60 44 46 93 0.77 1.71 2.27 0.42 
KAERI6 0.31 − 0.63 46 1.26 5.34 44 47 90 0.83 1.71 2.27 0.42 
KAERI8 0.32 − 0.58 46 1.31 5.49 45 47 92 0.78 1.74 2.29 0.42 
KAERI7 0.32 − 0.59 48 1.30 5.47 44 49 92 0.79 1.77 2.33 0.42 
KAERI 0.31 − 0.60 50 1.20 4.76 39 50 87 0.92 1.79 2.40 0.43 
KAERI1 0.31 − 0.60 54 1.12 4.10 33 52 82 1.03 1.85 2.52 0.44 
KAERI3 0.31 − 0.61 55 1.11 4.06 34 52 82 1.06 1.86 2.52 0.43 
KAERI2 0.31 − 0.62 56 1.10 4.01 34 52 82 1.07 1.86 2.52 0.43 
KAERI4 0.31 − 0.60 55 1.11 4.04 35 52 83 1.05 1.86 2.51 0.43 
Average over all organizations 0.35 ¡1.11 33 0.96 6.87 50 40 85 2.11 1.30 1.80 0.27 
Median over all organizations 0.35 ¡1.17 32 0.93 5.77 51 39 84 1.91 1.24 1.71 0.26 
Maximum over all 

organizations 
0.44 ¡0.60 50 1.20 25.02 62 50 94 6.16 1.79 2.40 0.43 

Minimum over all 
organizations 

0.19 ¡1.78 6 0.88 3.81 0 30 75 0.92 0.67 1.37 0.05   
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Table A.7 
Statistics for USX75 and time frame July, 8th, to September 30th, using stack emissions for IRE & CNL and including all remaining emitters. Results are shown per 
organization for individual run IDs (organization IDs plus subcripts) and over all run-IDs per participating organization ordered by rank. Bottom lines show metrics 
over all organizations after averaging over all run-IDs per organization. Number of valid sample pairs involved including observed samples below MDC: 166.  

Organization’s runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

AWE2 0.16 − 0.77 28 4.63 14.16 47 51 102 0.88 1.42 1.95 0.36 
AWE 0.16 − 0.77 28 4.63 14.12 47 51 102 0.88 1.42 1.96 0.36 
AWE1 0.16 − 0.77 28 4.63 14.09 46 51 102 0.88 1.42 1.96 0.36 
BOKU2 0.28 − 0.67 29 3.80 8.51 45 54 96 1.13 1.58 2.13 0.41 
VINATOM 0.19 0.97 60 18.87 36.02 17 74 272 0.17 1.89 2.72 0.08 
NOAA-ARL1 0.26 0.94 57 7.53 5.98 33 77 215 0.43 1.94 2.61 0.22 
BOKU 0.31 − 0.19 47 5.69 10.48 32 66 118 0.77 1.98 2.66 0.42 
JAEA-1 0.35 0.67 60 9.16 12.20 25 72 170 0.34 2.11 2.86 0.22 
ARPANSA 0.44 − 0.50 55 3.17 4.90 31 66 83 1.33 2.15 2.84 0.48 
KAERI8 0.36 0.39 57 7.74 11.85 28 69 140 0.40 2.19 2.91 0.36 
CTBTO-1 0.54 − 0.49 52 3.00 4.35 34 63 78 1.16 2.19 2.85 0.52 
PNNL 0.43 0.44 56 6.96 9.12 31 67 137 0.43 2.20 2.89 0.36 
KAERI6 0.36 0.44 58 7.62 10.83 26 73 147 0.41 2.22 2.96 0.34 
KAERI7 0.38 0.41 59 7.45 10.74 27 70 142 0.42 2.23 2.96 0.36 
KAERI5 0.37 0.42 60 7.51 10.80 27 71 143 0.41 2.24 2.97 0.35 
ZAMG 0.45 − 0.32 57 3.52 5.02 31 67 88 0.99 2.28 2.97 0.61 
NOAA-ARL 0.43 0.17 64 4.50 4.17 28 73 123 1.05 2.34 3.07 0.53 
FOI 0.51 0.17 52 5.06 6.33 30 67 98 0.57 2.37 3.07 0.67 
JAEA-2 0.56 0.94 67 6.73 4.82 24 86 197 0.42 2.38 3.14 0.25 
BOKU1 0.34 0.30 65 7.57 12.46 19 77 139 0.42 2.39 3.20 0.43 
CTBTO-2 0.48 − 0.33 60 3.21 4.22 26 73 82 1.16 2.39 3.13 0.60 
KAERI 0.40 0.38 70 6.22 7.99 22 75 123 0.52 2.43 3.22 0.44 
NOAA-ARL2 0.46 − 0.17 66 3.17 3.48 25 72 81 1.27 2.50 3.25 0.73 
LLNL 0.55 − 0.16 60 3.43 4.03 26 69 84 0.88 2.52 3.26 0.78 
NOAA-ARL3 0.56 − 0.28 69 2.81 3.05 25 72 72 1.44 2.59 3.34 0.63 
KAERI2 0.43 0.39 83 5.12 5.18 15 80 107 0.60 2.62 3.47 0.48 
KAERI3 0.44 0.35 82 4.92 5.00 16 80 104 0.62 2.64 3.48 0.52 
KAERI1 0.44 0.35 83 4.95 5.02 16 80 104 0.62 2.64 3.48 0.51 
KAERI4 0.45 0.27 81 4.48 4.48 17 80 98 0.69 2.67 3.50 0.60 
IRSN 0.65 0.01 72 2.87 2.40 26 75 74 0.96 2.88 3.62 0.91 
CMC2 0.76 0.35 75 3.04 1.90 16 82 81 0.72 2.98 3.82 0.62 
CMC 0.76 0.40 80 3.25 2.08 16 84 84 0.67 3.02 3.86 0.57 
CMC1 0.77 0.43 81 3.26 2.00 16 85 86 0.66 3.04 3.88 0.55 
CMC3 0.75 0.40 83 3.47 2.34 15 85 85 0.64 3.04 3.89 0.55 
Average over all organizations 0.45 0.09 59 5.64 8.27 28 71 120 0.77 2.29 3.01 0.49 
Median over all organizations 0.45 0.09 60 4.56 4.96 27 71 100 0.82 2.31 3.02 0.50 
Maximum over all 

organizations 
0.76 0.97 80 18.87 36.02 47 86 272 1.33 3.02 3.86 0.91 

Minimum over all 
organizations 

0.16 ¡0.77 28 2.87 2.08 16 51 74 0.17 1.42 1.96 0.08   

Table A.8 
Same as Table A.7, but with IRE and CNL stack emissions only.  

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

AWE2 0.16 − 0.79 23 4.63 14.49 48 50 103 0.88 1.35 1.87 0.35 
AWE 0.16 − 0.79 23 4.63 14.49 48 50 103 0.88 1.35 1.87 0.35 
AWE1 0.16 − 0.79 23 4.63 14.49 48 50 103 0.88 1.35 1.87 0.35 
BOKU2 0.28 − 0.67 29 3.80 8.51 45 54 96 1.13 1.58 2.13 0.41 
VINATOM 0.19 0.96 49 18.87 36.54 23 72 272 0.17 1.77 2.54 0.08 
BOKU 0.31 − 0.20 42 5.69 10.68 35 63 119 0.77 1.91 2.57 0.43 
NOAA-ARL1 0.26 0.93 56 7.51 6.06 32 79 212 0.44 1.96 2.64 0.22 
ARPANSA 0.44 − 0.54 44 3.18 5.17 34 63 84 1.33 1.99 2.65 0.46 
KAERI8 0.36 0.36 43 7.74 12.25 35 63 141 0.40 2.01 2.66 0.38 
KAERI5 0.37 0.39 45 7.50 11.18 32 64 144 0.41 2.03 2.71 0.37 
KAERI7 0.37 0.38 45 7.45 11.12 33 64 143 0.42 2.04 2.71 0.38 
KAERI6 0.36 0.41 45 7.62 11.22 31 66 149 0.41 2.04 2.73 0.35 
JAEA-1 0.35 0.66 55 9.15 12.36 26 71 170 0.34 2.05 2.79 0.22 
PNNL 0.43 0.42 46 6.94 9.25 34 64 137 0.43 2.08 2.74 0.37 
CTBTO-2 0.47 − 0.43 45 3.22 4.71 35 64 85 1.18 2.09 2.74 0.53 
CTBTO-1 0.54 − 0.53 46 3.01 4.58 37 62 79 1.17 2.11 2.74 0.51 
ZAMG 0.45 − 0.36 46 3.52 5.24 34 65 89 0.99 2.13 2.79 0.58 
NOAA-ARL 0.43 0.12 56 4.50 4.33 30 71 122 1.05 2.22 2.92 0.49 
BOKU1 0.34 0.27 54 7.57 12.85 24 72 141 0.42 2.25 3.01 0.46 
KAERI 0.40 0.34 56 6.22 8.27 26 71 124 0.52 2.26 2.99 0.46 
FOI 0.51 0.14 47 5.04 6.44 32 64 97 0.57 2.31 2.99 0.69 
NOAA-ARL2 0.46 − 0.22 55 3.17 3.69 28 69 82 1.27 2.33 3.05 0.68 

(continued on next page) 
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Table A.8 (continued ) 

Organizations’ runs R FB [mBq/ 
m3] 

F5 
[%] 

BCRMSE [mBq/ 

m3] 

BCNMSE KS 
[%] 

ACC 
[%] 

NAAD 
[%] 

Ratio 
stdvs 

Rank RankKS SS 

JAEA-2 0.56 0.93 63 6.71 4.84 24 86 196 0.42 2.34 3.10 0.25 
NOAA-ARL3 0.56 − 0.34 56 2.81 3.25 30 67 73 1.45 2.37 3.07 0.57 
LLNL 0.55 − 0.18 54 3.42 4.10 28 68 85 0.88 2.43 3.15 0.76 
KAERI3 0.44 0.31 66 4.93 5.18 20 78 104 0.62 2.47 3.27 0.54 
KAERI2 0.43 0.36 68 5.12 5.36 18 78 108 0.60 2.47 3.29 0.50 
KAERI1 0.44 0.32 67 4.95 5.20 20 78 105 0.62 2.48 3.28 0.53 
KAERI4 0.45 0.24 66 4.48 4.64 20 76 99 0.69 2.50 3.30 0.64 
IRSN 0.64 − 0.02 61 2.87 2.48 31 69 75 0.97 2.71 3.40 0.91 
CMC3 0.75 0.38 71 3.46 2.39 19 80 85 0.64 2.89 3.70 0.57 
CMC2 0.76 0.32 69 3.03 1.94 20 78 80 0.72 2.89 3.69 0.64 
CMC 0.76 0.37 70 3.24 2.13 19 80 83 0.68 2.90 3.70 0.59 
CMC1 0.77 0.41 71 3.24 2.04 19 81 86 0.66 2.92 3.73 0.56 
Average over all organizations 0.45 0.06 50 5.64 8.47 31 68 120 0.77 2.16 2.85 0.48 
Median over all organizations 0.44 0.05 48 4.56 5.20 32 67 100 0.83 2.12 2.79 0.48 
Maximum over all 

organizations 
0.76 0.96 70 18.87 36.54 48 86 272 1.33 2.90 3.70 0.91 

Minimum over all 
organizations 

0.16 ¡0.79 23 2.87 2.13 19 50 75 0.17 1.35 1.87 0.08  

A.2. Results of the correlation analysis in order to reduce the full ensemble  

Table A.9 
List of models retained as part of the reduced ensemble and those discarded because of being affected by high correlation (>0.95) with other model sets.   

CAX17 DEX33 SEX63 USX75 

Number of original/retained members 27/17 28/21 26/17 26/16 
Models excluded AWE1 CTBTO-21 ARPANSA AWE1  

CMC1 KAERI1 AWE1 CMC1  
CTBTO-21 KAERI2 CMC1 CTBTO-2  
KAERI1 KAERI3 KAERI1 KAERI1  
KAERI2 KAERI6 KAERI2 KAERI2  
KAERI3 KAERI7 KAERI3 KAERI3  
KAERI5 NOAA-ARL2 KAERI5 KAERI5  
KAERI6  KAERI6 KAERI6  
KAERI7  KAERI7 KAERI7  
NOAA-ARL2   NOAA-ARL2 

Models included ARPANSA ARPANSA1 AWE2 ARPANSA  
AWE2 ARPANSA2 BOKU1 AWE2  
CMC2 AWE1 BOKU2 BOKU1  
CMC3 AWE2 CMC2 BOKU2  
CTBTO-22 BOKU1 CMC3 CMC2  
KAERI4 BOKU2 CTBTO-2 CMC3  
NOAA-ARL1 CMC1 FOI FOI  
NOAA-ARL3 CMC2 IRSN IRSN  
BOKU1 CMC3 KAERI4 KAERI4  
BOKU2 CTBTO-22 KAERI8 KAERI8  
FOI FOI LLNL LLNL  
IRSN IRSN NOAA-ARL1 NOAA-ARL1  
KAERI8 KAERI4 NOAA-ARL2 NOAA-ARL3  
VINATOM KAERI5 NOAA-ARL3 PNNL  
PNNL KAERI8 PNNL VINATOM  
ZAMG LLNL VINATOM ZAMG  
LLNL NOAA-ARL1 ZAMG    

NOAA-ARL3     
PNNL     
VINATOM     
ZAMG    
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